Lecture 2 ARRAY LAYOUT SOURCE INVERSION
Subject 1 Relationship between Strong-Motion Array Parameters and the Accuracy of
Source Inversion and Physical Waves

1. INTRODUCTION

In several regions where large earthquakes are expected to occur in the near future, immediate installation of dense
strong-motion arrays was strongly recommended at the International Workshop on Strong-Motion Earthquake
Instrument Arrays held in Honolulu, Hawaii, in 1978 (Iwan, 1978). In spite of the general recognition of the
importance for planning strong-motion array layouts, a systematic analysis has never been tried to obtain a
relationship between the array layout and the accuracy of source inversions. Also, relatively large inconsistencies
were seen among the inversion results for the 1979 Imperial Valley earthquake (e.g., Olson and Apsel, 1982;
Hartzell and Heaton, 1983; Archuleta, 1984; Anderson and Silver, 1985), which has provided so far the best
available set of strong-motion data and generated a great deal of interest on the limitations of source inversion.

Although there are several objectives in strong-motion array observations, we try to determine how we
should distribute se1smic array stations for determunation of the spatial distribution of moment on a large fault. The
major goal of this study is to prepare guidelines for future installations of strong-motion arrays. This study
addresses the limitations of current source inversion studies posed by the configuration of the strong-motion array
and the number of stations. We apply a modified version of the method previously developed in Miyatake er al.
(1986) to several synthetic rupture models and evaluate contributions of various types of sewsmic waves.

An 1mportant aspect to be discussed is the contribution of each of the main physical waves to the accuracy
of source inversion. A proper answer for this question sheds light on strong-motion array designs. For example,
Menke (19835) showed, in his inverse Radon transform/tomographic construction technique, that a complete suite
of the far-field observations did not span the complete set of possible projection lines. Near-source data from the
1985 Michoacan, Mexico, earthquake may suggest usefulness of near-field terms (e.g., Anderson er al., 1986;
Mendosa and Hartzell, 1989). However, a general argument on the relative significance of various physical waves
for source inversion has not been made. We attempt to give an answer by measuring degration 1 the accuracy of
source inversion when various wave types are removed from the problem.

In recent typical inversion studies (¢.g., Hartzell and Heaton, 1983; Mori and Shimazaki, 1985), the entire
fault is divided into many subfaults, and the slip is allowed to take place on each subfanlt at a prescribed time point
or at a time window consisting of a few prescribed time points; the rupture propagation is basically assumed. Also,
a functional form of moment release on each subfault is assumed. The unknowns are parameters associated with
the seismic moment on each subfault. In our analysis, we will use a similar parameterization for the representation
of an earthquake source process.

In a previcus paper (Miyatake er ai., 1986), we developed a method to estimate the standard deviation of

subfault moment. Assuming a strike-slip fault located at the center of a circular array with Ns uniformly distribured
stations within a large radius, R, the maximum standard deviation normalized by the moment is obtained as

o < Ne? . 10%%/Ns

* This lecture note is based on the paper of the same title written by Masahiro Iida, Takashi Miyarake and Kunihiko
Shimazaki, published on "Bulletin of the Seismological Society of America, Vol. 80, No. §, pp. 1533-1552,
December 1990".

35



where Ne is the number of subfaults. In this simulation, only far-field § waves were considered. In the present
study, we systematically examine more general cases and include not only far-field § waves, but also near-field
terms and surface waves. Tt will be shown that, when exact solutions in an elastic half-spdce are used, a different
result ¢ o Ne*/Ns'? holds. o does not show a simple dependence on R

After briefly reviewing our method in the next section, assumed fault-array geometries are described. We
treat three typical types of situations: strike-slip, dip-stip, and offshore subduction thrust faults. The latter two have
identical fault geometries, but the station distribution is different. The results of systematically varying fault and
array parameters are described, and contributions of far- and near-field terms and surface waves are investigated.
They are aiso interpreted from an array layout point of view.

2. METHOD

Since our method has been fully explained in Miyatake e al. {1986), we will bnefly summarize the method and
give a few comments from an inverse theory point of view. Major differences between our approach and typical
methods of source inversion will be distinguished.

As was previously discussed, the entire fault is divided into many subfaults; the slip is allowed to take place
only once 6n each element of the fault. We assume a point source at the center of each subfault with a common
source time function, which depends on the subfault size The parameters chosen as the unknowns are the seismic
moment and the rupture onset time for each subfault. The known parameters whose uncertainties are taken into
account are the dip angle, the strike direction, and the slip angle of each subfault. We consider variable timing
errors. It is also assumed that the observed displacement waveform contains errors. All of the errors are assumed
to be normally distributed, and their standard deviations are listed in Table 1.

TABLE |
STANDARD DEVIATIONS OF [NDEPENDENT VARIARLES
IN ESTIMATING THE SEISMIC MOMENT AND THE
RUPTLRE ONSET TIME OF SLIP AT EACH SUBFALLT

Dip angle 10 0¢
Strike direction 10 (1
Ship angle 10 (1
Wave amplitude 001 cm

Exact solutions (Kawasaki er al., 1973) are treated in a semi-infinite homogeneous space. In the previous
study (Muiyatake er al., 1973) are utihized only far-field S waves. For general applicability of the results, we
normalize all the variables as shown in the previous study. For example, the fault length is used to normalize the
distances. An introduction of a specific crustal structure would make the results more realistic, but would destroy
this normalization scheme. More realistic analysis, which considers a regional-layered structure, will be given
elsewhere (lida et al., in preparation).

We have made two minor changes in going from far-field § waves to exact solutions. First, we use a ramp
function because of the simplicity and reduced computation time instead of a slightly more complex function
described in the previous smudy (Miyatake er al., 1986). Second, instead of constant timing errors used in the
previous study, variable timing errors of t = | 8v/v | -¢ are intuitively introduced, where 7 15 measured after the
ruprure origin time, v is the wave velocity, and v is the error in the velocity. Here, | év/v | is set equal to 0.05
on the basis of a few simulations. This assumption signifies that our confidence in properly identifying an arrival
in the records as being due to structural disturbance (e.g., interference with different phases and distorted waveform)
decreases, the greater the arrival time and the epicentral distance.
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The theorerical waveform is a function of both the unknown and known parameters. Denoting by a(k =
1....py and x(I = 1,.. ,q) the unknown and known parameters, respectively, the theoretical displacement of the
ith station at the jth time point can be expressed as FiXhyeeen X Qyyenn, ). We define two residuals as the
differences between the observed and estimated vatues for dependent and independent variables,

R,=F'-Ff
Ru, = X[” — Xy (1)

where F;' and X, indicate the observed displacement and the true value of the /th parameter of the ith station at the

Jjth time point, respectively. We seek a solution that minimizes the weighted sum of the squares of the two kinds
of residuals,

8

]

ZE (leszj + Z wthﬁ})‘ (2)

L )

The weights, w,, w,, are defined as the reciprocals of the variances (i.e., the squares of the uncertainties listed in
Table 1). From the minimization,

38 =0, (3)
the normal equations can be obtained that can be schematically written 1n matrix form,
C-A=£E (4)

where an element of marrix A(4,) indicates the difference between the value of unknown parameter, &, and its initial
guess ay, (i.e., A4, = a, - @) Elements of matrices B and C are expressed as follows,

c-pn i G/, )
where
L, = (AR,/8f,")* Ly (8R, /8x,,)"

wu 4 Wy,

RLJO = FJ'. - le(Xluy - XL]L]; A1y s apO)-

Following Wolberg (1967), the uncertainty of the kth unknown parameter can be assessed without solving
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the normal equations, but by an inverse of the C matrix in the normat equations,

O'akz = C;h[ (6)

This technique called "prediction analysis” is more advantageous than a Monte Carlo simulation because we need
to take the inverse only once for each set of array station locations and the rarget fault with an assumed rupture
mode.

This procedure corresponds to obtaining a covariance matrix of the solution m inverse theory [e.g.,
equation (44) in Tarantola and Valette, 1982]. However, note that there are no additional constraints to stabilize
the solution in equation (3). In many source inversions, the fault is partitioned into a large number of small
subfaults. Instability arises due to the ill-conditioned matrix of synthetics, even in an overdetermined system of
equations and when the number of subfaults 1s small {e.g., Hartzell and Heaton, 1983). To stabilize the solution,
additional constraints are usually given, such as moment minimization, smoothing, and filtering of singular values.
By the stability constraints, the resolution of the solution is sacrificed. In gefieral, it is necessary to compromise
two quantities (e.g., Backus and Gilbert, 1967): resolution and variance of the solution.

In the present study, no attempt is made to stabilize solutions. Instead, we require the "perfect” resolution
of the solution {i.e., the resolution matrix is an identity matrix). We use only variance to estimate the accuracy of
the inversion This is simply because it is desirable to use onfy one parameter to evaluate the effectiveness of a
strong-motion array. Also, it would be extremely time consuming to choose an optimal parameter to obtain a
satisfactory tradeoff between resolution and variance, which makes it impossible to estimate each array resolving
power for many suites of fault-array geometries owing to an excessive computational burden. Furthermore, a
comparison between two cases with different optimal parameters would be difficult.

The predetermined subfault size is important in our study because it gives the spatial resolution. In many
source iaversions, the subfault size is rather insignificant because the effective resolution is larger than the subfault
size It is unfortunate that the resolution of the solution ts rarely exphicitly described i most source inversions.

Because we only use a linear inversion scheme, errors in estimating the rupture onset time are considerably
underestimated. This means that we obtain variance estimates for a locally linear region around the correct rupture
onset time in a nonlinear problem, since the ground motions are a nonlinear function of the onset time. Thus, the
estimated uncertainty of the onset time will not be used in the following and the accuracy of the source inversion
will be evaluated by the maximum standard deviation of subfault moment. Actually, we will use the maximumn
standard deviation normalized by the moment. Qur treatment corresponds to most of typical source inversion
schemes in which an a prion rupture time distribution is assumed.

Certainly, recent studies have tried to address various approaches for solving nonlinear problems (e.g.,
Beroza and Spudich, 1988; Olson and Anderson, 1988; Hartzell and lida, 1990). However, the validity of each
method has not yet been justified by sufficient demonstration studies. Some methods depend heavily on the given
initial values while others do nor use realistic Green's functions. Rather, they seem to be in the process of
development. Incorporation of such a nonlinear scheme into our method leads simply to an excessive computational
burden in our problem of treating many fault-array combinations. In the current situation, we avoid nonlinear
formulations.

3. EXAMINATION OF FAULT AND ARRAY PARAMETERS

Three different geometries are used in this study. Figure 1 shows a pure strike-slip fault with a dip angle, § = 90°
or a pure dip-slip fault with § = 30° located at the center of a circular array. The two faults have the same depth
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on the upper edges. Figure 2 shows the second case in which the stations are distributed only in a fan-shaped area.
The faulr is located at the center of the fan. This case is used for investigating effects of variations of azimuthal
coverage of the source and rupture direction. The third case corresponds to an offshore subduction thrust (Fig. 3).
Stations are mainly distributed along the coast, but a few OBS stations are tested. Throughout the simulations, all
the distances are normalized by the fault length. All the standard values assumed are summarized in Table 2.
These fault-array parameters are changed separately to estimate their influence on the inversion uncertainty.

TABLE 2
STANDARD VALUES OF FAULT-ARRAY AND MEDIUM PARAMETERS
USED THROUGHOUT SIMULATIONS

Fault Parameters

Number of fault elements, Ne 18 (=6 x 3}
Aspect ratio (fault width divided by faulc 0.5
length), &
Dip angle for strike-slip fault 90"
Dip angle for dip-slip fault 30°
Depth of the top of the fault, 2 0.1
Rupture mode {rupture velocity is fixed Unilateral
at 0.8)
Array Parameters
Number of stations, Ns 6
Array radius, R 2.0
Azimuthal coverage of the source, ¢ 360°
Components used All components
Medium Parameters
P-wave velocity, V, 171
S-wave velocity, V, (normalized by this 1.0
value itself)
Density, p(normalized by this value itself) 1.0

31 Fault parameters

Five parameters are considered: (1) the number of subfaults on the fixed fault, Ne; (2) the aspect ratio -- & = the
fault width divided by the fault length (the area of the subfaults is fixed); (3) the dip angle, §; (4) the fault depth,
k; and (5) the rupture mode. Strictly speaking, some of the fault parameters are closely related, and each of them
cannot be changed separately. For example, such a relationship exists between the number of subfaults and the
aspect ratio. This is because all the distances are normalized by the length of the entire fault, and the fault length
has to be kept unchanged. Thus, only the fault width has to be changed to investigate the effect of the aspect ratio.
In simulation (1), to estimate the spatial resolution of the source inversion, the number of subfaults and the subfault
size are changed while the size of the entire fault is unchanged. Two different subfault shapes are used, a square
element and a rectangular one whose length is twice its height. In simulation (2), both the number of subfaults and
the aspect ratio are changed, while the subfault size and the number of subfaults in a row along the strike direction
are unchanged. In this case, the fault width and the entire fault area increase when the number of subfaults
increases, because the fault length is kept unchanged. For mvestigating the effect of the rupture mode, four cases
are considered: unilateral rupture, bilateral rupture, rupture that starts from the shallower side and propagates
downward, and rupture that starts from the deeper side and propagates upward.

3.2 Array parameters

Four parameters are considered: (1) the number of stations, Ns; (2) the array radius, R; (3) the azimuthal coverage
of the source, ¢, defined as the circumferential angle of a fan in which stations are distributed; and (4) the
components of the seismograms. In simulation (3), the azimuthal coverage of the source, a different type of array
is used (as shown in Fig. 2). The siations are distributed randomly in the dan-shaped area with a radius of 2.0.
Two cases of unilateral rupture (in opposite directions) are assumed. Furthermore, we consider two cases as
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follows, because N5 and ¢ can be interrelated. In the first case, the number of stations, Ns, is kept constant, but
the density of stations 1s changed according to a change in.azimuthal coverage, ¢. In the second case, the number
of stations, Ns, is kept proportional to the azimuthal coverage, ¢. In this case, the density of stations is constant.
For simulation (4), for the components of the seismograms, we will examine the following seven cases: (1) only
the component parallel to the fault stnke (the first component) is used; (2) only the horizontal component
perpendicular to the fault strike (the second component); (3) only the vertical component (the third component); (4)
both the first and second components; (5) both the first and third compenents; (6} both second and third components;
and (7) all the three components.

33 Simulation for an offshore subduction thrust

Land stattons are not necessarily effective to investigate the rupturing process of offshore events. However, no
quantitative arguments on whether strong-motion ocean bottom seismographs are worth installing have yet been
made We attempt to demonstrate or refute their necessity by conducting a test of the relative value of ocean bottom
sersmographs and surface ones for studying the rupture of a subduction zone event.

At present, a semi-permanent strong-motion ocean bottom seismograph does not exist, although temporary
networks of sirong-motion ocean bottom seismograph systems are in the process of development. Since 1978,
relatively low-cost sersmic stations for measuring strong ground motion on the ocean bottom have been tested
(Stewnmetz er al., 1979, 1981). The strong-motion ocean bottom seismograph system was constructed by extending
and erhancing design concepts employed in the development of a high-gain OBS (Latham er al., 1978). These
experiments indicate that an ocean bottom station is capable of recording ground accelerations up to about 1.0 g,
in the 0.1 to 10 Hz frequency band, with good reliability in most cohesive type soil conditions.

For this simulation, a fault and array geometry shown in Figure 3 is used. The numbers of surface stations
and ocean bottom stations, N5 and Mo are varied separately to estimate their influence. The distribution in the
surface stations is dependent upon only the number of surface stations, Ns, and the positions are fixed as illustrated
in Figure 3. Severai patterns of ocean bottom stations are tested for each pair of N5 and No. They are intended
to determine the best station positions.

4. RESULTS

4.1 Fault parameters

Effects of the fault parameters are summarized in Figure 4, where a and b show that the normalized uncertainty,
o is roughly proportional to Neé? (the number of subfaults on the fixed fault) and & (the aspect ratio: the fault width
divided by the fault length). The number of subfaults, Ne, can be easily substituted by the subfault size {the spatial
resolution). The two relationships simply represent the identical effect because & is proportional to Ne in simulation
(2). On the other hand, the uncertainty is almost independent of the fault mechanism. The uncertainty depends little
on the dip angle (Fig. 4¢). Also noticeable in Fig. 4a is that square fault element gives a better result than a
rectangular one. This is probably because the rectangular case requires greater depth resolution. The results in
Figure 4c showing larger uncertainty for a steeper fault plane suggest that depth resolution is worse than resolution
in the horizontal direction.

Figure 4d indicates that effects of the fault depth are not as large and not as simple. Please note that the
ordinate is in linear scale in Figure 4d and e. In the case for the strike-slip fault, the accuracy is unaffected by fault
depth. However, for the dip-ship fault, the accuracy becomes low when h = 0 5to 1.0. We find that the accuracy
is nearly independent of the rupture modes (Fig. 4e).

4.2 Array parameters

The uncertainty, o, 1s found 10 roughly obey an inverse root dependence on Ns (Fig. 5a). Together with the number
of subfaults, Ne, a relationship ¢ o Ne*/Ns'? suggests that numerous stations are required to analyze the detailed
rupturing process (i.e., the generation of high-frequency seismic waves). Figure 5b exhibits that the inversion
uncertainty becomes minimum when the array radius, R, is around 0.75 to 2.0 umes the fault length. The large
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array radius is effective perhaps because of the presence of surface waves. We will elaborate on this observation
later.

The simulation on station azimuthal coverage shows that @ o ¢! holds approximately in the case where Ns
is kept proportional to ¢ (Fig. 5¢) Please note that ¢ o N5 holds when the azimuthal coverage is unchanged.
Thus, the relationship o « ¢”' under the condition of ¢ o N5 shows a remarkable contribution of azumuthal coverage.
Here, the relationship is determined by the case where the rupture direction is considered disadvantageous for the
station array (i.e., the rupture propagates toward the station array, Case A). When the rupture propagates away
from the station array, the accuracy of the solution loses dependence on the azimuthal coverage of the source.
Apparently, good azimuthal coverage largely enhances the ability to separate arrival times between seismic waves.
Figure 5d shows that the horizontal component parallel to the fault strike tends to contribute to a strike-slip fault,
and the vertical component to a dip-slip fault.

4.3 Simulation for an offshore subduction thrust

Effects of the increasing numbers of surface stations and ocean bottom stations on the inversion uncertainty are
displayed in Figure 6. Interestingly, the inversion uncertainty does not appear to saturate as the number of surface
stations is increased in the absence of ocean bottom stations. The graph suggests that effects of ocean bottom
stations are not very dramaric. For example, even if we increase the number from 1 to 2 or from 2 to 4, the large
drep in the inversion uncertainty is not seen. In order to recover the accuracy of the source inversion equivalent
to that attained by using four ocean bottorn stations (together with four surface stations), we have only to install 14
additional surface stations. In this case, one OBS is worth about four surface stations. Considering difficulty in
the design, deployment and maintenance for ocean bottom instruments, it is doubtful that our results are a strong
mcentive to deploy permanent ocean bottom stations in subduction zones.

The simulation also gives an interesting view concerning positions of ocean bottom stations. As seen in
Figure 6, if we have only one instrument, it should be located on the opposite side to the land about the fault, not
within the fault zone. In the case of two instruments, one should be deployed on the opposite side to the land while
the other is within the fault zone above the fault. This indicates that azimuthal coverage is more important than
proximity to the fault

4.4 Discussion

The result ¢ o 1/Ns'? suggests that just an increase 1n the number of stations is not sufficient to investigate the
detailed fault rupturing process. Instead, array stations should be deployed accounting for the effectiveness of an
array layout. This can be seen by comparison with the result of ¢ o 1/¢, which has been obtained under the
condition of ¢ @ Ns, showing the primary importance of azimuthal coverage of the source. Also, in accordance
with Figure 5b showing o versus R, the appropriate array-radius ranges are around 0.75 to 2.0, reflecting the
usefulness of distant stations regardless of the fault type. Potentially more important are results derived from a
simulation on an offshore subduction thrust. They tell us how the accuracy of the source inversion is controlled
by the relative numbers of surface and ocean bottom stations and where the ocean bottom stations should be
installed.  Our results do not appear to show convincingly that permanent ocean bottom stations are needed in
subduction zones.

In a previous study (Miyatake er al., 1986), we obtained, using only far-field § waves and the same array
stations as those 1n this study, an empirical relationship among the maximum standard deviation, o, and three basic
parameters for a strike-slip fault.

o « Ne? . 1073/Ns

As previously discussed, the results of the present study differ with the aforementioned results, especially concerning
the dependence of the inversion uncertainty on the array radius, R. In the previous study, effects of smaller array
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radius on the inversion uncertainty were not examined. We should note that the inversion uncerrainty increases
when the array radius is smaller than the fault length (Fig. 5b; also see Fig. 11 for the far-field S-wave case);
therefore, the empirical relationship obtained in the previous study should be restricted to ranges greater than the
fault length. Morcover, different trends are seen in the range of large array radius between the current and previous
studies, as shown in Figure 5b.

When we use exact solutions, the accuracy of the source inversion is more independent of most parameters
than in a previous study of only far-field § waves (iida e al., 1986) except for the number of subfaults, Me.
Dependence of the inversion accuracy on most parameters is rather similar regardless of the seismic waves
employed, exact solutions, or only far-field § waves, except for two parameters, the fault depth, £, and the array
radius, R. We infer naturally that the difference originates from surface waves (Rayleigh waves) since the two
parameters are related with them. Thus, the simultaneous use of different seismic waves causes the solutions to
be insensitive to array configuration. In contrast, the dependence of the inversion uncertainty on the number of
subfaults 15 not connected to what sorts of seismic waves are employed.

Through a series of simulations, however, we have not referred to effects of array configuration in this
paper as it is difficult to parameterize. Our studies (lida et al., 1988; lida, 1990), which attempted to determine
optimum strong-motion array geometry for source inversion, using either only far-field § waves or complete Green's
functions in a homogeneous half space, indicated that the most preferable array nvoives two different kinds of
stations: stations close to the fault and aligned parallel to its strike, and stations surrounding the fault area with good
azimuthal coverage. The former stations resolve the latter stage of the rupturing process while the latter stations
resolve the earlier stage. In the two studies, three typical types of faults were chosen. The array geometries
obtained in the latter study (ida, 1990) were consistent with those proposed on the basis of empirical judgement
at the 1978 International Workshop (Iwan, 1978).

5. PHYSICAL WAVES

There are two problems to be addressed. How can we extrapolate the idealized array geometries utilized in this
study to those that can actually be used in the field? The other problem 15 the adequacy of the half-space
approximation postitlated throughout our study. There also seems to be two major differences between the real earth
structure and the homogeneous half-space: (1) the half-space has no Love waves, and (2) the half-space model may
not be a good one in terms of body waves that leave the source downgoing and are observed at distant stations.

If we understand physical processes that produce our results, we may be able to solve these problems. It
would be very helpful 1o show which physical waves contribute more to the accuracy of the source inversion in the
half-space model. We could investigate effects of far- and near-field terms as well as surface waves by removing
them from the problem. In our attempt to separate surface waves, we initially applied a phase-velocity filter to half-
space seismograms (Spudich and Ascher, 1983), but this did not work well because of the similarity of S and
Rayleigh wave velocities. Ultimately, we chose to substantiate surface-wave effects by comparing half-space
seismograms and wholespace ones. We were unable to find a technique to separate far- and/or near-field terms in
half-space seismograms. This separation is straightforward for wholespace seismograms. We will examine effects
of far- and near-field terms in the wholespace (e.g., Aki and Richards, 1980). We use the definition of near-field
terms used by Hasegawa (1975). This means that intermediate terms, named by Aki and Richards, are included
in our near-field terms.

Inclusion (removal) of far- and near-field terms and surface waves (Rayleigh waves) has two contrasting
effects. It will complicate (simplify) the waveform by interference with different phases and result in an increase
(a decrease) in the uncertainty of the solution. On the other hand, an increase (a decrease) in the source information
contained in the waveform will decrease (increase) the uncertainty. Two factors to be examined on physical waves
may be dip angle and fault depth: dip angle is related to the relative separation in arrival times between seismic
waves radiated from subfaults while a shallow fault depth causes preponderance of surface waves. In the following
physical wave simulations, we have changed the number of subfaults from 18 to 8 for computational expedience,
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and have reduced the rise time form 0.58 to 0.33. These two changes reduce source complexity, so that effects
of physical waves will be emphasized. Two sorts of sumulations will be performed.

5.1 Phase interference and source depth

The fault-arvay layout for the first simulation is a slightly mod:fied version of Figure 1 and is shown in Figure 7.
Stations 1 to 3 are shifted toward the center of the station array in order that the distance between each station and
the array center is halved, thereby emphasizing the near-field terms. The three types of fault geometries used are
summarized in Table 3. The first two are exactly the same as used in most simulations. The third one is appended
for two purposes. Comparing results for the first model fault plane with those for the third one with the same
average fault depth, we can derive the effects of phase interference due to the relative separation in arrival times
between seismic waves. We measure the phase interference by PI = E™ _, (z,-2,)/Ns, where ¢, and ¢, are the
arrival times of the latest Rayleigh wave and the earliest § wave observed at the ith station. The calculated values
are lhisted m Table 3. A small Pl means large phase interference due to the fault geometry. The effects come
originally from dip angle. The first fault plane with a 90° dip will produce more severe phase interference than
the other two planes because arrival times between various seismic waves radiated from subfaults are very close
to each other at all the stations. Also, comparison of results for the fault planes of (2) and (3) will demonstrate
effects of surface-wave dominance due to sources with different depths. The types of physical waves used at each
station are illustrated schematically in Figure 8 The same 10 cases are tested for each of the three fault planes.
Important comparisons among others are those of cases (1) and (3) for surface waves, cases (2) and (5) for near-
field terms, and cases (4) and (10) for far-field terms.

TABLE 3

THREE TYPES OF FAULT GEOMETRIES USED TO STUDY EFFECTS
OF VaRIOUS PHYSICAL WAVES

Average Denth

Type Ship Direction Dhp Angle of Fault Pr
1 Strike ship 90’ 0.35 1.02
2 Diwp ship 30° 0.225 1.17
3 Dip ship 30° 035 1.13

Parameter, P, 1s introduced to measure phase interference due to
the fault geometry See text for definition

The accuracy of the source inversion for every case is summarized in Figure 9. At first glance, we find
that tasults for the fault planes of (2) and (3) show a different trend from those for the fault plane of (1). In the
fault planes of (2) and (3), primarily surface waves at distant stations contribute to the source inversion [see small
uncertainty in cases (1), (2), (5) and (8)]. Secondly, far-field terms are a mawn contributor in the absence of surface
waves at distant stations [see large uncertainty in cases (9) and (10)], whereas near-field terms are not. Our
"contribution” means the increase in the source information due to various waves minus the decrease in the effective
information due to phase interference. Therefore, no'change in the value may imply a comparable increase in the
source information and phase interference. Rigorously speaking, contributions from surface waves cannot be
complemented by any other waves. Use of the shallower fault (2) identical to fault (3} shows that a predominance
of surface waves improves the uncertainty Please note remarkable decrease in the inversion uncertainty in moving
from (3) to (2) in cases (1), (2), (5) and (8) in contrast to small changes in cases (3), (4), (6) and (7). Significant
decrease in cases (9) and (10) is probably due to large dependence of near-field terms on the hypocentral distance.
On the other hand, no improvement can be made with respect to surface waves in the case of vertical fault plane
(1). This is primarily due to phase interference. Please note that case (7), where only far-field waves are used.
gives the best result We can see that the far-field terms at both near-source and distant stations [see large
uncertainty in cases (8) to (10)] control the inverston uncertainty more strongly than the near-field terms. Our first
simulation tells the sigmificance of avoiding phase interference.

5.2 Physical waves and array radius
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To wnvestigate a relationship between the accuracy of the source inversion and the array radius for different physical
waves, we conduct the second simulation that again uses the fault-array layout shown in Figure 1. Physical waves
examined include: (1) a complete half-space solution; (2) a complete wholespace solution; (3) only far-field terms;
and (4) only near-field terms. Array radii, R, of 0.25, 0.5, 0.75, 1.0 and 2.0 are tested for each physical wave.
The fault plane (2), which showed plain effects on physical waves, is selected because it causes less phase
interference and surface waves dominate.

The accuracy of the source inversion, o, is plotted in Figure 10. Despite the fact that ¢ for a complete
half-space solution degrades as R decreases, o for body waves becomes greatly improved in the ranges with small
R. o for far-field terms has much the same trend as that for near-field terms. Although a steeper slope for near-
field terms 1s recognized, a good accuracy is not obtained in the case of R = 0.25 as expected from the steep trend.
This graph implies body-wave analyses using near-source seismograms are very useful if there is little interference
from surface waves. Note that surface waves are considerably dominant in our model fault. A differential array
analysis using body-wave seismograms obtained from a source region (Spudich and Cranswick, 1984; Spudich and
Oppenheimer, 1986) is another powerful way avatlable for source studies. The technique is rather suitable for high
frequencies, which are very difficult to process based upon usual scurce inversion frameworks. Since the technique
makes use of a difference 1n arrival times of distinguishable phases, our method cannot be directly applied.
Nevertheless, this stmulation suggests the effectiveness of differential array analysis.

A previous study of differential array analysis, which used only far-field § waves (lida er al., 1986),
showed that the desired array radius was approximately 0.5 to 1.0 (Fig. 11). In our current simulation of body
waves, the best radius is 0.25 or smaller. A major factor for the difference is probably source complexity due to
the number of subfaults and the rise time. Increasing source complexity seems to require a larger array radius.

53 Discussion

For an inclined fauit bringing less phase interference, distant surface waves contribute most Subsidiary far-field
body waves at distant stations are helpful in the absence of surface waves. As for a vertical fault generating more
interference, on the other hand, far-field body waves observed at both near-source and distant stations are a sole
contributor. "Contribution” means that the waves are not recoverable by any other waves, while "no contribution”
means that they can be complemented by other waves. Also, station distribution able to avoid phase interference
is highly desirable. Another important conclusion is that an array with a small array radius located in the source
region would be useful provided that surface waves are suppressed and the source is not complex.

Invoking these results, we can discuss the adequacy of the half-space approximation. Certainly, Love
waves are likely to bring further information at distant stations. However, as the Love-wave velocity is closer than
the Rayleigh-wave velocity to S-wave velocity, phase interference between Love and S waves would be more severe,
leading to speculation that the accuracy of the source inversion is not greatly improved by Love waves. While
surface waves at distant stations are largely responsible for reducing the inversion uncertainty in the case of an
inclined fauit, far-field terms at small and large distances play a significant role in a vertical fault. Although we
cannot give any direct guess on the influence of body waves that leave the source downgoing and are observed at
distant stations, such waves appear to be more contaminated with surface waves since they have large travel times.
That is, the effects of such waves at distant stations on the accuracy of the source inversion are not drastic. In
conclusion, the half-space approximation is basically adequate.

Our physical wave simulations, together with other preceding studies on optimum array configurations (lida
et al., 1988; fida, 1990}, suggest how results obtained from our idealized array geometries can be extrapolated to
those actually used in the field. Because information obtained from distant surface waves cannot be recovered using
any other waves, stations encircling the fault area with good azimuthal coverage are primanly required to unravel
the source structure. These stations resolve the earlier stage of the rupturing process, while body waves in the
source region resolve the later stage (lida et @f., 1988). In the 1988 paper, we could not discriminate the effects
of different physical waves. Using the concept of physical waves, we can have a better understanding of results
in ancther previous paper, especially great dependence of the optimal array configuration on the fault mechanism
(hda, 1990). For a vertical strike-slip fault of strict phase requirements, stations immediately above the fault plane,
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which are robust at the vertical resolution, are needed. In addition. some of the stations that form perfect azimuthal
coverage give resolution of the source due to far-field body waves and/or surface waves On the other hand, an
inclined dip-slip fault favors a grid pattern of stations that appears to help many phases to be separated.
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Fig. 1 Geometrical arrangement of fault planes and array stations for most simulations. Two kinds of faults are
located at the center of an array: a pure strike-slip fault with a dip angle, & = 90° and a pure dip-ship fault with
6 = 30°. All the distances are normalized by the fault length. The following are standard parameters (see Table
2). The number of subfaults, Ne, is 18 (16 x 3). The aspect ratio of the fault, ¥, is assumed to be 0.5. The depth
of the top of the fault, &, is assumed as 0.1. The rupture is supposed to propagate unilaterally. The number of
stations, N, is 6 and the array radius, R, is 2.0.

Case A

Fig. 2 Geometrical arrangement of fault planes and array stations for a simulation on azimuthal coverage of the
source. The stations are distributed randomly in the fan-shaped area. We consider two cases as follows because
Ns and ¢ can be interrelated. In the first case, the number of stations, Ns, is kept constant, but the density of
stations is changed according to a change in azimuthal coverage, ¢. In the second case, the number of stations,
Ns, is kept proportional to the azimuthal coverage, ¢. In this case, the density of stations is constant. Two soris
of unilateral rupture (in opposite directions), cases A and B are assumed. In case A, the rupture propagates toward
the array. In case B, the rupture moves away from the array. See Figure 1 caption for detailed explanations on
fault plane parameters.
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Fig. 3 Geometrical arrangement of fault planes and array stations for a simulation on an offshore subduction thrust.
A pure dip-slip fault with a dip angle, 5 = 30° is assumed. The numbers of surface stations and ocean bottom
stations, Ns and Mo, are varied separately to estimate their influence. The distribution in the surface stations is fixed
based upon the number of surface stations, Ns, and forms a line or a rectangular grid, as illustrated. Several
patterns of ocean bottom stations are tested for each pair of Ns and No. See Figure 1 caption for detailed

explanations on fault plane parameters.
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linear scale 1n (d) and (e).
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Fig. 5 Relatonship between the inversion uncertainty, ¢, and array parameters (the number of stations, Ns, the
array radws, R, the azrmuthal coverage, ¢, and the components of the seismograms). In (c), only the result for
a case that Ns is kept proportional to ¢ is shown. In {(d), I means the component parallel to the fault strike, 2 refers
to the harizonral component perpendicular o the fault strike, and 3 is the vertical component,
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Ns and Ne, obtained from an offshore subduction thrust simulation. The best positions of ocean bottom stations
are depicted for each pair of Ns and No. We find that, when one ot two ocean bottom seismographs are installed,
the locatjons are not dependent on the number of surface stations, Ns, whereas the locations are changed according
to N5 in the case of four ocean bottom seismographs.

Fig 7 Geometrical arrangement of fault planes and array stations for studying effects of various physical waves.
Basically, this is the same as that shown in Figure 1, except that Ne is 8 (4 x 2), and stations 1 to 3 are shifted
toward the center of the station array in order that the distance between each station and the center of the array is

halved.
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Fig. 8 Schematic plot clarifying the types of physical waves used at each station. The inner circle represents three
near-fault stations, while the outer circle shows other three distant stations. H = complete half-space seismograms
are used; W = complete wholespace seismograms are used, so surface waves are removed. F and N = only far-
field or near-field terms for the wholespace seismograms are used (W = F + N).
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Fig. 9 The accuracy of the source inversion for different fault planes and various physical waves. See Table 3 for
the fault planes and Figure 8 for the physical waves.
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Lecture 2 ARRAY LAYOUT FOR SOURCE INVERSION
Subject 2 Optimum Strong-Motion Array Geometry for Source Inversion

1. INTRODUCTION

This study is a revised version of optimizing strong-motion array geometry for source inversions. As was stated
m our previous study,' the question of how we quantitatively estimate effects of strong-motion array geometry had
not explicitly been addressed, until two different numerical approaches were tried for this problem.'® One approach
estmated the accuracy of a source inversion on the basis of Wolberg’s prediction analysis for each of a number of
fault-array combinations.! The other approach evaluated the effect of recording geometries on the retrieval of source
information using a frequency-domain inversion and a minimum norm solution.? It should be recognized throughout
these studies that the reliability of the analytical results 1s inevitably governed by the array geometry.

Understanding of the nature of earthquake ground motion is a crucial problem to be solved from both
strong-motion seismology and earthquake engineering points of view, and in particular, the estimation of strong
ground motions at an arbitrary site 1s the least understood problem in the field of earthquake engineering. Much
information on the detailed source and structure effects and on the wide variety of local conditions is undoubtedly
necessary. To date, many inverse studies have been done to evaluate parameters related 1o earthquake sources and
crustal and site structures. Considering the large variations in the results recognized among such inverse studies,
however, a systematic estimate for the accuracy of inversion solutions is required. In addition, despite recent
developments in the methodology of data analysis and the performance of seismographs, which have made prominent
improvements in the accuracy of inversion solutions, virtually very little is known about the effectiveness of array
geometries

As a first step, we mnvestigated the effects of array geometry on source inversion in our previous study.'
The optimum strong-motion array geometry for each of three types of earthquake faults, strike-slip, dip-slip and
offshore subduction thrust, was determined on the basis of the ability to estimate the seismic moments of subfault
elements. 'Optimum’ means that the solution of a source inversion becomes the most accurate for the same number
of array stations and for the same process of a fault rupture. The resultant optimum array geometries were
compared with the ones proposed on the basis of empirical judgement at the International Workshop on Strong-
Motion Earthquake Instrument Arrays held in Honolulu, Hawaii in 1978.2 The results were not necessarily
consistent.

The most serious omission noted in the previous study' appears to be use of only the far-field S waves,
ignoring P and surface waves and the near-field terms in the Green’s function. Effects of these waves should be
considered (n the light of a realistic array design. The effectiveness of a complete Green’s function in a half-space®
was a systematically examined in another study.® The results indicated that the accuracy of the source inversion
was much less dependent on array parameters for the complete solution than for the S-wave solution. This
suggested that the simultaneous use of several kinds of waves®’ was advantageous in source inversion studies.

Accordingly, optimum strong-motion array geometries for source inversions are again determined for the
same three types of earthquake faults, using an improved method based upon the complete wave solution. The
optimum array geometries determined here are compared with the ones obtained in the previous study' and/or the
ones proposed at the International Workshop.?

2. METHODS

* This lecture note is based on the paper of the same title written by Masahiro Iida, published on "Earthquake
Engineering and Structural Dynamics, Vol. 19, 35-44 (1990)".
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The method is the same as the one used in the previous study.! We briefly describe the technique. The enly
distinctive improvement 1s the employment of a complete Green's function in a half-space.* Certainty, this Green’s
function does not include the specification of heterogenedus structure, and the use of a more complete Green's
function 1s feasible in principle. At preseni, however, it requires excessive computational efforts.

We use Wolberg's prediction analysis to calculate the accuracy of a waveform source inversion; that is,
we estimate the accuracy of the solution from errors in the data by using a principle of error propagation. Most
of the current source inversion studies deal with a detailed history of rupture on a fault. We divide the entire fault
into many subfaults and use the displacement waveform representation for each subfault. A common, simple source
time function which depends upon the subfault size 1s assumed for each subfault. The seismic moment and the
rupture onset time for each subfault are unknown parameters, as is generally the case in source inversion studies.
The unknown parameters are determined using a least-squares criterion. Here, un certainties are assumed for
several independent variables. We define the accuracy of the source inversion, ¢, by the mazimum standard
deviation of errors in estimating the seismic moment for each subfault, which is normalized by the seismic moment.

The theoretical waveform is a function of known and unknown parameters. The known parameters whose
uncertainties are taken into account (the dip angle, the strike direction, the slip angle, the wave amplitude and the
arrival time) are regarded as the independent variables and are denoted by x, (p = 1,..., Np). We denote by a, (i
= 1,...,Nu) the unknown parameters, the seismic moment and rupture onset time for each subfault. The wave
amplitude for the jth time point at the kth station is expressed as # () = f* (Xiy... Xnpgs Q1y-.-,0n). Two residuals,
Ruy, and Rx,,, are defined as the differences between the observed and calculated values:

Ruy = U (t,) — u¥(1,)

Rxpyy = Xpuj = Xpij

where we denote by U (¢) and X, (p = 1,...,Np) the observed wave amplitude and the true values for known
parameters, respectively. A least-squares method is used to determine the values of unknown parameters g, (i =
l,..., Nu), which minimize the weighted sun of the squares of the residuals, S

Np
S =;;(Wukl Rui; + ‘L;: Wx,, Rx“,?,u)

where W, = l/ow,’ and Wx,, = l/ox,’>. We denote the standard deviation of errors in wave amplitude by ow,
and that in known parameters by ox,,. The solution for a general least-squares problem is obtained by solving
normal equations in mairix form. If we follow Wolberg's prediction analysis, the standard deviation of errors in
the ith unknown parameter og, can be estimated by calculating an inverse of the matrix and it is unnecessary to solve
the actual normal equations.

The near-field terms and P and surface waves included in the complete solution have complex effects that
are difficult to predict. They will complicate the waveforms and result in an increase in the uncertainty of the
solution. On the other hand, the increase in the source information contained in the waveforms will decrease the
uncertainty. A direct comparison of the absolute values between the results for the complete solution and the S-
wave solution' cannot be expected because of the following three differences in the calculations. First, using the
same time interval, the exact solution needs more data as it involves a series of waves from P to surface waves.
Secondly, a ramp function is assumed as the source time function in the case of the complete solution (because of
the simplification and computational time), although a slightly more complex function was used in the case of the
S-wave solution. Thirdly, attenuation was considered by assuming an exponential decay of the S-wave amplitude
with distance for the S-wave solution. Since a simple, appropriate structural uncertanty is difficult to incorporate
in the case of the complete solution, timing errors of & = | dv/v | ¢t are introduced, where / is the measured time
from the start of the fault fracture process, v is the wave propagation velocity and v is the error in the velocity.
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Here, 0.03 (5 percent error) is adopted for | 8vw/v | . This assumption signifies that the timing etrors due to
unknown structures (e.g. interference with different phases and distorted waveform during wave propagation)
increase with increasmg time from the rupture initiation and increasing epicentral distance. This representation
effectively expresses the spatio-temporal disturbance of wave propagation due to unknown structures.

Assumption of the same values for fault parameters as those used in the previous study' facilitates the
comparison of the obtained results not only with the previous ones but also with the oncs addressed at the
Workshop. Three assumned types of fault geometries are pictured in Figure 1. The tabulated information on fault
paramerers is shown in Table [. They are fixed as the same values as in the previous study with the exception of
a few parameters relating to wave propagation.

Table 1. Parameters assumed for investigating effects of array configurations on a source inversion

Strike-shp Dip-slip Subduction thrust
Fault area S0 kmx 15km 45kmx 15km 90 km x 45 km
Number of fault elements, Ne W=12x2) -  12=6x%x 2 - 18(=6x 3)
Subfault area 75kmx 75km 75kmx 75km 1Skmx 15km
Dip angle, & 90° 45° 30°
Final offset, D 20m I0m 30m
Rise time, ¢ 84 sec 84 sec 14-4 sec
Rupture mode unilateral unilateral unilateral
Rupture velogity, V, 2-5 kmy/sec 2-5 kmy/sec 2-5 kmy/sec
Depth to top of fault, A 3km 3km 9km
P-wave velocity, ¥, 50 km/sec 50 kmy/sec 50 km/sec
S-wave velocity, V, 30 km/sec 30 km/sec 30 km/sec

By assuming a unilateral mode of fault rupture and by fixing the number of array stations at 16, the
optimum array configuration is evaluated by trial and error modelling for each of the three fault geometries shown
in Figure I. A wide variety of array configurations is tested for their respective fault geometries. The array
configurations examined for a strike-slip fault, a dip-slip fault and an offshore subduction thrust fault are shown in
Figures 2, 3 and 4, respectively.,

3. RESULTS AND DISCUSSION

The numerical value corresponding to each array configuration in Figures 2, 3 and 4 shows the accuracy of the
source inversion. o: in other words, the maximum standard deviation of errors in estimating the seisinic moment
for each subfault, normalized by the seismic moment. For example, 0.244 in Figure 2 means 24.4 percent error.
Figures 2 and 3 show the array configuration effects for strike-slip and dip-siip faults. The dominant factor on array
configuration for a strike-slip fault is found to be good azimuthal coverage of stations [Cases (g) and (h)], and
stations close to the fault [Cases (k) and (1)]. A perpendicular array to the fanlt strike [Case (d)] can give reasonable
results. Satisfactory solutions are difficult using only array stations aligned parallel to the fault trace [Cases (2) and
(0)]. Arrays that include no near-fault stations [Cases (i) and (j)], and T-shaped [Case (c)] or grid-shaped [Cases
(e) and (D)) arrays give poor results as well.

Effective array configurations for a dip-slip fault include stations paratlel and close to the fault [Cases (a)
and (b)] or a grid-shaped pauern [Cases (e} and (f)]. A T-shaped array [Case (c)] or good azimuthal coverage
{Cases (k) and (1} also provide reasonable solutions Lack of near-fault stations paralleling the fault does a poorer
job of resolving the rupture desails [Cases (d} and (g) to ().
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A significant improvement of the uncertainty of the solution due to strong-motion ocean bottom stations
is seen in Figure 4, where effects of the array configuranon for an offshore subduction thrust fault are evaluated
iCases (g) to (1)]. Little dependency of the uncertainty on the array configuration is attributed to the various
restricted station installations on the land area [Cases (a) to (f)], although a few lines of array stations aligned along
the shoreline appear to be slightly better than others.

After some additional simulations on other array configurations for each of these earthquake faults, a
preferred array configuration for each fault geometry is presented in Figure 5 together with the corresponding
distribution of the standard deviations of errors in estimating the seismic moments over the fault surface We find
that the distribution of the estimation errors is generally uniform over the fault surface for the preferred array
configurations. The preferred array configurations are compared with both those obtained in the previous study’
(Figure 6), where the same kind of quantitative estimation was done using only the far-field S waves, and the ones
proposed on the basis of empirical judgement at the 1978 International Workshop® (Figure 7). The preferred array
configuration obtained here for a strike-slip fault looks similar to the previous study [Figure 6 (2)]. The array
configuration appears to bear less resemblance to the comb-shaped one which was recommended at the Workshop
[Figure 7(a)]. The optimum array for a dip-slip fault, a grid pattern, seems substantially different from the previous
study [Figure 6(b)]. We should note that this configuration is the same as the one recommended at the Workshop
{Figure 7(b)]. For an offshore subduction thrust fault, the preferred configuration is much the same as the previous
study [Figure 6(c)], and 1t also 1s similar to the Workshop proposal [Figure 7(c)]. The ocean bottom stations do
not affect the desired array configuration on the land area.

The large variation in the uncertainty of the solution due to the difference in array configuration for the
strike-slip fault, which was found in the previous study [Figure 6(a)], is not seen in the present study (Figure 2).
It is probably because a stable inversion is performed through a complete Green’s function. Inclusion of the near-
field terms and P and surface waves causes less dependency of the accuracy of the source inversion on fault-array
parameters, emphasizing the advantages of using different kind of waves.® Presumably, the importance of distant
stations for a strike-slip fault is assoctated with a contribution due to surface waves. Surface waves are also helpful
for carrying out the source inversion in the absence of near-fault stations for an offshore fault. On the other hand,
near-fault stations play a more important role for a dip-slip event. This fact suggests that a complicated
displacement field around the source area caused by the dip-slip event can be discriminated efficiently with a
combination of different waves. The presemt results are not designed for derailed discussion because of the
imperfect method' and the Green’s function used, but provide a general description as to the array layout suitable
for source studies.

Finally, it should be menticned that complex effects due to crustal structure, which are very difficult to
parameterize in a standard format, are not taken into account in the present study. The effects possibly produce
much more uncertainty for seismograms recorded at distant stations than for those at nearby stations beyond the
assumption of 6t = | ov/v | 1. Near-fault stations are important for source studies, so that installation of ocean
bottom instruments is required for an offshore event.

4, CONCLUSIONS

Optimum array geometry for source inversions has been investigated using a complete Green’s function in a
homogeneous half-space. Three earthquake faults considered are strike-slip, dip-slip and offshore thrust faults. The
preferred array geometries quantitatively determined have been compared with the ones previously obtamned using
only the far-field S waves' and the ones proposed on the basis of empirical judgement at the 1978 International

Workshop on Strong-Motion Earthquake Instrument Arrays.” The main results are summarized as follows.

)] Use of a complete Green’s function reduces the dependency on the array configuration. This suggests that
the simultaneous use of different kinds of waves in source studies is desirable.

2) The optimum strong-motion array for a strike-slip fault is characterized by stations well spaced in azimuth,
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together with near-fault stations. The optimum array for a dip-slip eveant has stations arranged in a grid-
shaped form located in the near-source region. The installation of ocean bottom stations is desirable for
an offshore event.

3) The optimum strong-motion array geometries which have been derived from the use of a complete Green'’s
function are generally consistent with the ones proposed at the 1978 International Workshop.
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Fig. 1 Types of fault geometries used for investigating effects of array configurations on source inversions (cross

sections): (a) strike-slip; (b) dip-slip; (¢) subduction thrust fault
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Fig. 2 Array configurations (plan views) tested for investigation of the optimum configuration for a strike-slip fault.
The norizontal bar shows the fault and the dots indicate stations. The numerical value indicates the accuracy of the
inversion solution, «, the maximum standard deviation of errors in estimating the seismic moment for each subfault,

normalized by the seismic moment. For example, 0.244 means 24.4 per cent error.
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