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There have been some events, such as the 1964 Puget Sound,
1969 Santa Rosa, 1983 Coalinga and 1985 Michoacan earth-
quakes, for which seismic wave propagation was the predominate
hazard to buried pipelines. For example, the damage ratio for the
water supply system in the Lake Zone (scft soil zone) of Merro-
politan Mexico City of about 0.45 repairs/km has been attributed
to wave propagation effects in the 1985 Michoacan event.

As discussed in Chapter 3, when a seismic wave travels along
the ground surface, any two points located a.ong the propagation
path will undergo out-of-phase motions. Those motions induce
both axial and bending strains in a buried pipeline due to interac-
tion at the pipe-soil interface. For segmented pipelines, damage
usually occurs at the pipe joints. Although seismic wave propaga-
tion damage to continuous pipelines is less ccmman, the observed
(ailure machanism is typically local buckling

This and the following chapter focus on buried pipe response
due to wave propagation effects. The existing methods for evaluat-
ing the response of continuous pipelines as well as the behavior at
elbows and tees are discussed and compared in this chapter. The
follawing chapter discusses similar issues for segmented pipelines

STRAIGHT CONTINUDUS
PIPELINES

In general, the axial strain induced in a straight continuous
pipeline depends on the ground strain, the wavelength of the trav-
elling waves and the interaction forces at the pipe-soil interface.
For small to moderate ground motion, one may simply assume



that pipe strain is equal to ground strain. However, for large ground
motion, slippage typicaily occurs at the pipe-soil interface, result-
INg in pipe strain somewhat less than the ground strain.

10O, 1 NEWMARK APPRDACLCH

Simplified proceaures for assessing pipe response due to wave
propagation were first developed by Newmark (1967), and have
since been used and/or extended by a number of authors (e g,
Yeh, 1974). Newmark’s approach is based on three assumptions.
The first assumption, which is common to most all the determinis-
he approaches, deals with the earthquake excitation The ground
motion (that is, the acceleration, velocity and displacement time
histories) at twa pornts alung the propagation path are assumed to
differ only by a time lag. That is, the excitation is modeled as a
traveling wave. The second assumption is that pipeline inertia terms
are small and may be neglecied (Wang and M. O’Rourke, 1378).
Experimental evidence from japan (Kubo, 1974} as well as ana-
fvtical studies (Sakurai and Takahashi, 1969, Shinozuka and Koike,
1979) indicate that this is a reasonable engineering approxima-
tion. The third assumption is that there is no relative movement at
the pipe-soil interface and hence, the pipe strain equals the ground
strain.

Figure 10.1 shows a pipeline subject to S-wave propagation in
a vertical plane having an angle of incidence y, with respect to the
vertical.
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For this case, the ground strain paraliel to the pipe axis is:

Vin .
£5 = - 8inY, COS T, (10.1)

where V_ is the peak ground velocity and C, is the shear wave
velocity.

In terms of Equation 3.8, V_cosy, is the ground velocity paral-
lel to the pipe axis and, as noted in Equation 3.5, C/siny, is the
apparent propagation velocity with respect to the ground surface
and the pipeline axis.

Similarly, for R-wave, the ground strain parallel to the pipe
axis is.
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Since bending strain In a pipe due to wave propagalion is typi-
cally a second order effect, our attention is restricted to axial strain
in the pipe. Equetions 10.71 and 10.2 overestimate pipe strain, es-
pecially when the ground stram is farge. For those cases, shippage

occeurs at the pipe-soil interface and the pipe strain is less than the
ground strain

19. 1.2 BEAKURAT AND TAXAHASHI
APPROALH

In refation to Newmark’s assumption regarding pipeline iner-
tia, Sakurai and Takahashi {1969) developed a simple analytical
maodel for a straight pipeline surrounded by an infinite elastic me-
dium (s0il}. They used D" Alembert’s principle to handle the inertia
farce. For a pipefine subject to the ground displacement u,, the
equilibrium for the pipe segment is:
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where u_is the displacement of the pipeline in z direction {longi-
tudinal direction), assumed to be the direction of wave propagation,



K is the linear soil stiffness per unit length as shown in Figure 5.2
and p is the mass density of pipe material.

The analytical results from Equation 10.3, which do not con-
sicler slippage at the pipe-soil interface, indicate that the pipe strain
s abou, equal to free field strain and hence, the inertia effects are
negligible. This result regarding inertia terms is not surprising In
light of the fact that the unit weight of a fluid filled pipe is not
greatly different from thal of the surrounding soil.

TO.1 .3 SHINDODZUKA AND Kol kKE
APPROADCH

In r2lation to Newmark's assumption regarding no relative dis-
placement at the pipe-soil interface, Shinozuka and Koike (1979)
rmod fy Equation 10.3 as follows:
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where 1, 15 the shear force at the pipe-soil interface per unit length
and ! is the pipe wall thickness,

Neglecting the effects of inertia, Shinozuka and Koike (1979)
develosed a conversion factor between ground and pipe strains.
For the case of no slippage at the pipe-soil interface (i.e., the soil
spuirgs remain elastic), the conversion factor s,
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That is. the pipe strain is p_ times the ground strain. This result
holds as long as the shear strain at the pipe-soil interface, v,

ot £t
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is less than the critical shear strain, y_, beyond which slippage
occurs at the pipe-soil interface. The critical shear strain as esti-
mated by Shinozuka and Koike is:
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In their analysis, Shinozuka and Koike (1979) assumed that
the critical shear strain is 1.0x10". That is, for yo < 1x 107, slip-
page will not take place, while for y,>1x 10", slippage occurs at
the pipe-soil interface.

For large amounts of ground movement, i.e., v,>v,,, the ground
to pipe conversion factor is;

Be = %"—qﬁa (10.8)

where ¢ is a factor which range from 1 to n/2 and quantifies the
degree of siippage at the pipe-soil nterface. That is for slippage
aver the whole pipe length g = 11/2.

The pipe axial strain is then simply calculated by:

e, = B.e, (10.9)

10.1.4 M. D ROURKE aND Et
HMADI APPROALCH

Also in relation to Newmark’s “no relative displacement as-
sumption”, M. O'Rourke arnd Bl Hmadi (1988) use a somewhat
different approach to estimate the maximum axial strain induced
in a continucus pipe due to wave propagation,

Consider a model of a buried pipeline shown n Figure 10.2.
The pipe has cross-sectional area A and maodulus of elasticity E.
The soil’s resistance to axial movement of the pipe is modeled by
a linear spring with stiffness K_and a slider which Iimts the soil
spring force to the maximum frictional resistance ¢, at the pipe-
soil interface. if the system remains elastic, that is the pipe strain



remains below its yreld strain and the soil spring force remains
below t, the differential equation for the pipe axial displacement
U s

H
%upcx) — BUx) = B0 (10.10)
X

where B! = K/AAL) and U (x} is the ground displacement parallel
to the pipe axis.
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I the ground strain between two points separated by a dis-
tance L_is modeled by a sinuscidal wave with wavelength A = 4L
the ground deformation U (x} (i e., displacement of the base of the
soil springs) is given by:

Usglx) = g4l sing;— (10.11)

-

where g, is the average ground strain over a separation distance L.
The | pipe strain fs then given by:
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gy = —b = —gg —————— 08 —

dx 2 B‘+[“)z 2s (10.12)

A
—
a



The elastic solution given in Equation 10.12 holds as long as
the pipe strain is below its yield strain and the maximum force in

the soil spring is less than the frictional resistance at the pipe-soil
interface. That is,

1
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From Equation 10.13, a slip strain g, is defined as
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For moderately dense backfill, the slip strain 15 plotted in Fig-
ure 10.3 as a function of separation distance L,. In this plot, two
different nominal diameters of X-60 grade pipe, D = 30 ¢cm (1Zin)
and 91 cm (36 in), as well as two different burial depths, 14 = 0.75
m {2.5 fty and 1.5 m {5 ). are considered

Since the slippage strains are less than the strains which would
results in pipe damage, propagation damage to continuous pipe
typically involve some slippage at the pipe-soil interface.

With this in mind, M. O’Rourke and E! +-imad: consider the
upper bound case where slippage occurs over the whole pipe
length. For a wave with wavelength \, the noints of zero ground
strain {points A and B), as shown in Figure 10.4, are separated by
a horizontal distance of A/2. Assuming a umform frictional force

per unit length ¢ , the maximum pipe strain at paint C due to fric-
tion is given by:

tu L,
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For R-waves, M. O'Rourke and £l Hmadi developed an analy-
sis procedure to estimate the maximum pipe strain. This procedure
compares axial strain i the soil to the strain in a continuous pipe-
line due to soil friction along its length. It is assumed that the soil
strain is due to R-waves propagating pataliel to the pipe axis. Due
to the dispersive nature of R-wave propagation (i.e., phase veloc-
ity an increasing function of wavelength), the soil strain is a
decreasing function of separation distance or wavelength, The pipe
strain due to the friction at the pipe-soil interface is an increasing
function of separation distance or wavelength. Ata particular sepa-
ration distance (that is, for a particular wavelength), the friction
strain matches the soil strain. This unique strain then becormes the
peak strain which could be induced in a continuous pipeline by
R-wave propagation. Figure 10.5 shows both the ground strain
and the pipe strain as function of the separation distance for an
elastic pipe.
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As shown in Figure 10.5, for sharter quarter-wavelength sepa-
ration distances, the pipeline frictional force acts over the whole
length (i.e., from A to 8 in Figure 10 4} and hence, the pipe strain
is linearly propartional to the quarter-wavelength separation dis-



tance. However, at longer quarter-wavelength separation distances,
the pipe frictional force acting only near Points A and 8 results in
a pipe strain equal ta the ground strain at Point C. Note that this
procedure for R-waves conservatively assumes that the peak ground
velocity, ¥V, applies to all frequencies (wavelengths) of R-wave

propagation and that all frequencies (wavelengths) are present in
the record.

to. 1.5 CoOMPARISON AMONGDB
APPROACHES

A comparison of the three approaches for a continuaus pipe
subject to wave propagation are presented in this subsection. The
comparison is based on R-wave propagation having a dispersion
curve with v = 0.48 shown in Figure 10 6. The peak particle veloc-
ity is taken as 0.35 m/s. The ground strains at three frequencies,
lrom Equation 10.2, are presented in Table 10.1 along with the
estimated strain in a straight pipeline with D=1.07 m (42 in} and
t=8mm (5/16 in)
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W Table 10.1 Comparigen For Straigh! Continuous Plpefine
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As shown in Table 10.1, three approaches result in essentially
the same pipe strain when the ground strain is small. In this case
the pipe and soil move together and pipe strain s equal to grourd
strain since no slippage occurs. However, for large ground strains,
the pipe strains from the Shinozuka and Koike approach as well as
the M. O'Rourke and El Hmadi approach are bath much less than
ground strain. That is, although the ground strains are larger, the
quarter wavelength distances over which the soil friction forces
act are comparatively smali. Note that Shinozuka and Koike’s ap-
proach for full slippage case with g = n/2 is essentially the same as
M. O'Rourke and El Hmadis, For g = 1 in the Shinozuka and
Koike approach, slippage occurs only over z porton of the pipe.
and the correspanding pipe strains are lower bounds.

1T0.1.6 COMPARISON WITH Casek
HisToRrRIiES

During the 1985 Michoacan earthquake, a welded steel pipe-
line with O = 107 cm (42 in), t = 0.8 ¢m (5/16 in} and made af API
120 X-42 steel was damaged at several locations within the Lake
Zone in Mexico City. As a case study, M O’Rourke and Ayala
(1990} estimated the compressive stress in the pipe due to R-wave
propagation.

Figure 10.6 shows the dispersion curve for the fundamental R-
wave, corresponding to the subsoil conditions of the Lake Zone in
the Mexico City (M. O'Rourke and Ayala, 1990). Nole that the
generalized ground profile for this site consists -ougily of a 40 m
layer of soft clay with a shear wave velocity of 4C m/s. Under this
layer, there are two stiffer strata with shear wave velocities ol 300

and 500 mfs respectively At the bottom is rock with a shear wave
velocity of 1250 m/s.



l'ora pipe surrounded by loose sand with y=110 b/t (17.2
kN and a coeflicient of friction p=0.5, the estimated compres-
stvestain using M. O'Raurke and 2l Mmadi's procedure was about
3.002 The corresponding plot of the ground stram and friction
strain isshown in Figure 10.7. Note in this figure, the friction strain
.§ propoitional to the quarter wavelength {i.e., separation distance)
‘o stiains less than about 0.001 (W4=~100 m). For larger separa-
-on distances, althcugh the axial force is still proportional to
separaton distance, the strain is not since we are now in the non-
"near porticn of the stress-strain diagram for the steel. The local
auckling strain is estimated to be abeut 0.0026 based upon
D/t=134 That is, the analytical procedure suggests that the pipe-
line was very close to buckling. Note that the pipeline did, in fact,
sulfer ¢ local uckling fatlure at several locations separated by
distances of 300 to 500 m (284 to 1640 0. This carresponds rea-
sonably well with the 130 m (426 ft) quarter wavelength distarce
in Figuie 10.7. That is, high rompression regions are a wavelength
apait, or 520 m (1706 fo for the critical quarter-wavelength of
T30 m 426 It
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BENDS AND TEES

A pipe network is typically composed of straight pipeline sec-
tions, and interconnecting bends, tees and crosses. The presence
of these elements can produce additional bending strains al these
interconnects and possibly lead to pipe damage This section will
focus on the effects of bends and tees.

1go.2.1 SHAH AND CHU APPROALCH

Considering the interaction forces at the pipe-soil interface,
Shah and Chu (1974), as well as Goodling (1983), developed ana-
iytical formulae for forces and moment at elbows and tees. Figure
10.8 shows the forces acting on a pipeline and pipe deformation
near the bend. The traveling wave is assumed to be propagating
parallel to Elernent 1 with ground motion also parallel to Element
1 (e.g., R-waves). Element 2 is modeled as a beam on an elastic
foundation with lateral soil stiffness K .
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Shah and Chu {1974} assumed that the pipe and ground strains
are equal at a focation (Point A in Figure 10.8 b) where no relative
displacement occurs at the pipe-soil interface. Denoting the dis-
tance from this location to the bend as I’ shown in Figure 10 8,
Shah and Chu (1974) a5 well as Goodling (1983) then estimated
the maximum axial force in Element [ at the bend (shear force in
Element 2) by

S=e AE-LL (10 16)

P

The moment and flexural displacement at a bend can be then
calculated as:

5
M= =
3 {10.17)
A4S
Ay = =22
3K, (10.18)

where { = 4K, / (A£f} and L' is the effective slippage length at the
bend.

The effective slippage length, L', can be calculated based on
displacement compatibility at the bend. That is, within the dis-
tance £, total ground deformation (taken ase, 1) is accommodated

An
by the lateral displacement of Element 2, 4 , and axial deforma-
) ceme .
tior of Element 1, 3+« For a long leg case (i e, lorg Element

1), this compatibility condition yields,

K, .8

Similarly, Figure 10.9 shows the forces and deformation for a
tee, again lor a wave propagating path parailel to Element 1.
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Using the same procedure as that for bends, Shah and Chu esti-
mate the force, moment and displacement for a tee by the following
equations:

S=e AE-tl (10.20)
5
M= s
ZC (10‘2 I)
&)
A =22
: Kq (10 22}

LI = ﬁ‘;—(\}l+ 48)‘“&!]{& - -lJ

ng qu; (1023)

Note that Shah and Chu (1974) as well as Goodling (1983)
assume pipe strain is equal to the maximum ground sirain at Point
A (Figure 10.8). Based upon the previous discussion of straight
pipe response to wave propagation, this assumption is likely orly



true for siall ground strains Furthermore, they estimate the fotal
groond displacemen: simply by (he maximum ground strain times
the efiective length L' This implies that the ground strain is con-

stant over the length L’ which only applies for a wavelength many
times larger than the length [,

10 zZ.2 SHINOZUKA AND KOIlkE
AFPPROALCH

Assuming a pipe moving with the soil at the location with zero
ground movement {Point B in Figure 10.1Q), Shinazuka and Koike
1979) developed simple equations to estimate pipe stiain at bends
Sasec on structura: analysis similar o that discussed above In
their analysis, the effective length, that is, the L term, is assumed
to be a quaiter wavclength, and the forces are obtained, as in the
previous model, by disnlacement compatibility at the bend. The
axial orce, S, can be then expressed by:

Ky |
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The moment and displacement at the bend can ther be calcu-
tated by Equations 10.17 and 10 18 Note that the total ground
deformation within the quarter wavelength is calculated by inte-
grating the pipe strain. That i,

By =2 (1025)

Similarly, the axial force $ in €lement 1 for a tee is:

”‘%Q (10.26)

1T0.2.3 FINITE ELEMENT APPRDAGH

In order to independently evaluate the assumptions which
underlay the existing approaches, the finite element model shown
in Figure 10 11 was used In this numerical model, axial and lat-
eral s0il springs are used to model the interaction at the pipe-sot!
interface. Element 1 is 600 m long and hence, considered appro-
priate for wavelength of roughly 600 m or less. The quasi-siatic
seismic excitation is modeled by displacing the hases of the soil

Bend
E
| D iF i Elemen: z
2 E Loy
™ Pipatine % i
Ag IH‘ E i
|5
2
{a) Cirigmal State (b) Finite Element Model
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springs. For example, point F moves A in the direction of wave
propagation, while point E does not move. For Element 1, the
movementof the bases (e.g., point D} of the longitudinal soil springs
varies along the nipe matching the sinusoidal pattern as shown in
Figure 10.71(a).

A steel pipe with diameter D = 0.76 m {30 in), wall thickness
t = 0.0095 m (3/8 in) is considered The assurned seismic excita-
tion is an R-wave with V= 0.36 m/s propagating pa‘aliel to
Element 1

Ta.,. 2.4 CoMPARIBON AMDNRG
APPRDACHES

Results from the finite element approach described in Section
10.2.3 are compared to the existing analytical approaches in this
section. For an elbow, the force, moment and displacement at the
elbow due to travelling wave effects are listed in Table 10.2 using
the Shah and Chu approach, the Shinozuka and Koike approach
as well as the linite element approach described above. Note that
twe cases are considered inTable 10.2 In this first case (Case I} the
ground strain and wavelength are taken as 0.29x107 and 244 m
respectively. While in Case [l, £=1.8x10"and A = 100 m,

From Equation 10.19, the effective length for the large ground
strain, small wavelength case is 233.3 m by the Gooding/Shah
ard Chu approach. Since this effective length is much larger than
a quarter wave tength, that approach can not be used. Note that
the effective length by Shinozuka and Koike matches relatively
well with the finite element results for both cases considered here.

As shown ir Table 10.2, for a smalil ground strain case, the
peak pipe strain at the elbow by Shah and Chu is larger than that
by both Shinozuka and Koike and the finite element method This
is due to the fact that Shah and Chu overestimate the ground de-
farmation, and simply assume the maximum pipe strain equai to
maximum ground strain. On the other hand, Shinozuka and Koike’s
approach underestimates the pipe strain at the elbow. This 1s due
to the fact that the axial soil stiffness they suggested (K =2mC =
2mpC? = 4 1x10° Nfm? (595 kips/in?) is much larger than that
(K = t,/x,= 8 3x10" N/m?(1 2 kips/in?)} in the finite element model.
For example, by using K = 8.3x10°"N/m? (1.2 kips/in) in Shinozuka



and Koike's approach, for the small ground strain case, the peak
strain at the elbow is estimated to be 4 9% 105, which rratches the
numerical strain (4.5% 10 %) very well

Overall, the comparison in Table 10 2 suggests that, of the avail-
able analytical approaches, the Shinozuka and Koike method
appears more appropriate.

= Tabie 102 Comparisen For Bend
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