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FOREWORD

Earihquakes sre potentially devastating natyral events which threaten
ives, destroy property, and disrupl Iife-sustaining services and societal
functions In 1986, the National Science Foundatior established the
National Center for Earlhquake Engineering Research to carry out sys-
tems integrated research to mitigate earthquake hazards in vulnerable
communities and t¢ enhance implementation effarts through technal-
agy transfer, outreach, and education. Since that ume, our Center has
engaged in a wide variety of muitidisciplinary studies to develop solu-
tions to the complex array of problerms asscciated with the development
of earthquake-resisiant communities.

Our series of monographs is a siep loward meefing s formidable
challenye. Over the past 12 years, we have investigated how builtlirgs
and their nonstructural components, lifelines, and highway stiuctures
behave and are affected by earthquakes, how damage to these struciures
impacts society, and how these damages can be mitigated through innn-
vative means. Our researchers have joined together ta share their exper-
lise in seismology, geotechnical engineering, structural engineering, risk
and relizbility, protective systems, and social and eccnomic systemns to
begin to define and delineate the best methods (o mitigale the losses
caused by these natural events

Cach monograph describes these research efforts in deiail Lach is
meant 1o be read by a wide variely of stakeholders, inciuding academi.
cians, engineers, government officlals, Insurance and linancial experls,
and others who are involved in developing earthquake lass retigation
measures, They supplement the Center's technical report series by higacl-
ening the topics studied.

As we begin our next phase cf research as the Muttidisciplinary Cen-
ter for Larthquake Engineering Research, we imend © focus our offorts
on applying advanced technologies 1o quantifying building and lifeline
performance through the estimation of expected losses; developing cost-
effective, performance-based rehabilitation technologies; and improving
response and recovery through strategic planning and crisis management,
Thesa subjects are expected 1o result in a new monograph series in the
future.

Iwould like 10 take this opportunity 1o thank the National Science
Foundation, the Slale of New York, the State University of New York al



Bulfalo, and our msiinional and inclusirsial affliales for therr conunued
suppant anc involvement with the Center | thank all the authars who
contributed their lime and talents 1o conducting the research perrayed
m the manogeaph serigs and lor thelr commitment Lo furthering our com-
mon goals. [ would alsa like to thank \he peer reviewers of each mono-
graph o their comments angl construclive advice,

115 my hope thal this monegraph series will serve as an important
(el loward making reseaich results more accesaible (o those who are in
o posihion ta inplement them, thus furthering our goal 1o reduce loss of
e and proteet property hiom the damage caused by eatthguakes

GeEnNRGE C. LEE
DIRECTOR, MuLTIDISCIFLINARY CENTER

FOR EARTHRQUAKE ENGINEERING RESEARCH



Foreword

........................................................................ Vv
Preface .. brrr aemrene ameeees eeeeao L Xi
Acknowledgments .............................. xv
Abbreviations ............ ... xvii
NOTAIONS ..o i v e e Xix
1 Seismic Hazards and Pipeline Performance in
Past Earthquakes. 1
I Sersmic 1hzards o o s w
12 Performance in Past Farthquakes . . L., .2
1.3 Empirical Damage Relalions }
131 Wave Prapegohen Damage Ce BN
132  PGRDamage. .. ... _.. ... L P ¢
1.4 Sysiem Performance . . | o i 11
2 Permanent Ground Deformation Hazards ... ... 13
2. Fault.o o 0 L e a1
2.2 tandslicle .. . . .. . L - - 16
2.3 tateral Spreacherg, . . . . . L. L 20
231 Amnuct of PGIY -2
232 Spaual Fxtontof L nlpm\ Sprt—"nd Zonr\ I
2.3.3 PG PalleIn e - vt o = on v, e W 27
3.4 Seisric Selllement .. ... C e e e = o U 14]
3 Wave Propagation Hazards _ . _ 33
3t Wave Propogation Tundamentals . . ... . 33
3.2 Attentuation Relations. ... ... .. .. ... e o L35
33 Effective Mopapation Velocily . ... . .. ... ... . 38
331 Body Waves .. ... G e e . 38
332 Surdare Waves ... L. L. e 39
34 ”th:length W e A2
3.5 Cinune Strain ;mtl (o |J]’\.l’1[|_|'r(l l)tlo 1y ‘u‘vg\,p 'I"r(;|1 :s‘n“nn LA

16 Filects of Variable Subsurface Canditons . . . A6



n

o

2
72

1ol Numerical Models o e e e .47
3162 Smplified Model |,
163 Coemparison ...
Pipe Failure Modes and Failure Criterion..
Continuous Pipeline . i s e,
4.1 Tewsile Tailure ... e oo
412 Locel Bucklng oo .
413 Beam Buckling .
414 Welded Slip jonts .
Segrvenced I"ip(-‘ln‘ e
42,1 Avial Pulbout ... .. .
422  Crushing of Bell and ‘ipl;,ol ]omrq ...............................
423 Circamlerential Flexural Tailure and Joint Rotation

Soil-Pipe Interaction . ... .. . . ...
Competent Non-Liquefied Soil ... ...
5.11 Longituchnal Movement

5.2 Fior zomlal Transverse Movement Ve

51.3  Veriral Transverse Movement, Upward Dlrechnn .8
54 Vertical Transverse Movement, Nownward Dlrecllun . B3
Ee-urvalent Eliffness of Sait Springs ... S .. 84
521 Avial Movement ., . . . T - 3
52 Latzral Mavement in the Honzontal PlanP - . . B5
5.3 Vertical Movement . 0 . ... .. . 87
Lrguefied Soil .. e e e e e, 87

Kesponse of Continuous Pipelines to

Longitudinal PGD . . ... . . . .91
Flagtic Mpe dodel e Lo 92
melastic Mips Maoder . . C e 97
621 WTIRKDING e e s . . 140
~2) o Tensile Failure, || 101
firfivence o” Expansicn joints e 102
Influence of an Clbow or Bend ..~ 106
Response of Continuous Pipelines to

Transverse PGD ... ... .. .. 13
Idealization of Spatially Distriliuted Trans&erqe PGD .. 115
Pipetine Surrounded by Non-Liquefied Soil . . 116
730 Tine Elernent Methods ..o, R i
722 Analvical Methods v con e . 130
F23 Companson Among Approaches .. ceceene, 137
724 Comparison wilh Case Hislories.,..... ..o, 139
725

Expeeled Response . . v i, oL .. 140



/.3

7.4

8.1

8.2

9.2

10

101

10.2

11

Pipelines in Liquefied Soil . ... . ‘ .14
731 Horizonlal Movement . .. R ... 142
7.3.2  Vertical Movement, ... e .. .. 143
Localized Abrupt PGD.. _.,........ .147
Response of Continuous P:pehnes to Faulhng ...... . 149
Strike-slip Fault ............. ce. . ..-150
811  Armalytical Models ..................................... 150
8.0.2  finite Elemen Models .. ... .. ... 157
8.%.3  Comparison Among Approaches .. . 162
8.74  Companson with Case Histnries... .. ... ca 163
Normal anct Reverse Fault ... . e o v v . 166
Response of Segmented Ptpelmes o PGD ... .. 167
Longitudinal PGD... . P I T
211 Distributed Deformat:on. ........... .. 168
9.2  Abrupt Deformation .. ...t v e 170
Transverse PGD . - S P
.21 Spahally D;stnbuled PGD L7
922 Fault Ofisers . 174
Response of Buried Continuous Pipelines

to Wave Propagation ... . 179
Straight Cominuous Pipelings o . . i 179
1011 Newmark Approach .. - 180
1012 Saxurai and Takahashi Approach ..... 181
10 1.3 Shingzuka amd Koike Approach . ... .. 182
101.4 M ORourke and O | madi Appeoach ., 183
10.1.5  Comparison Among Approaches . 188
10.1.6  Comparison with Case Hiskories......, .. 189
Rends and Tees ..o 191
(02,1 Shanh and Chou Approach . . | 191
10.2.2  Shinozuka and Koike Approach . . .., 194
t02.3  Fimte Element Appraach ... v o0 195
10.2.4  Comparison Among Approaches . ....... ... 196
Response of Segmented Pipelines

to Wave Propagation ... ... .. ... - 199
Straight Pipelines/Tension ... -+ o v, ... 199
Straight Pipelines/Compression .. ... . 204
Elbows and Connections ... .. . vceee s+ o ... 207
Comparison Among Approaches .. .o e 209

tffects of Liquefied Soii

2N



12

12.1
12.2
12.3
12 4
12.5

References ........ .o..cocie oot ettt
Author Index ......... ... ..o
Subject Index
Contributors .. ... e e

Countermeasures to Mitigaie
Seismic Damage ... -
Routing and Reinmlmn ...................

Isolation from Damaging Ground Movement -

Reduciion of Ground Maovemenis .
Fhigh Surenglh dMaterials | ... ... e
Mexible Malenals and Joints .



P R E F A L £

By MicHARL D'RDURKE

Buried pipeline systems are commonly used to transport wa-
te”, sewage, oil, natural gas and other materials. In the contermi-
nous United States, there are about 77,109 km (47,924 miiles) of
crude oil pipelines, 85.461 km (53,114 miles) of refined oil proe-
hines and 67,898 km (42,199 miles) of natural gas pipelines (FFMa,
1991). The total length of water and sewage pipelines is not readily
available. These pipelines are often referred to as “lifelines” singe
they carry materials essential to the support of life and mainte-
nance of property. Pipelines can be categorized as either continu-
qus or segmented. Steel pipelines with welded joints are consid-
ered to be continuous while segmented pipelines include castiron
pipe with caulked or rubber gasketed joints, ductile iran pipe with
rubber gasketed joints, concrete pipe, asbiestos cemen: pipe, etc

The earthquake safety of buried pipelines has attracied a great
deal of attention in recent years. Important characteristics of bur
ied pipelines are that they generally cover large areas and are sub-
ject to a variety of gectectonic hazards. Another characteristic of
truried pipelines, which distinguishes them from above-ground
structures and facilities, is that the relative movement of the pipes
with respect to the surrounding soil 1s generally small and the in-
ertia forces due to the weight of the pipeline and its contents are
relatively unimportant. Buried pipelines can be damaged either
by permanent movements of ground (i.e. PGD) or by ‘ransient seis-
mic wave propagation

Permanent ground movements include surface faulting, lat-
eral spreading due to liquefaction, and landsliding. Although PGD
hazards are usually limited to small regions within the pipeline
network, their potential for damage is very high since they impose
large deformation on pipelines. On the ather hand, tne wave propa-
gation hazards typically affect the whole pipeline network, but
with lower damage rates {i.e., lower pipe breaks and leaks per unit
length of pipe) For example, durmg the 1906 San Francisca earth-



(uake, the zones of laeral spreading accounted for only 5% of
the built-up area affected by strong ground shaking. However,
approximately 52% of all pipeline breaks occurred within one
city block of these zones, according to T. O’Rourke st al., (1985).
Presumably the remaining 48% of pipeline damage was attributed
to wave propagation. Hence, although the total amount of dam-
age due to PGD and wave propagation was roughly equal, the
damage:ate in the small isolated areas subject to PGD was about
2€ times higher than that due to wave propagation.

Continuous pipeiines may rupture in tension or buckle in com-
pression Observed seismic (ailure for segmented pipelines, par-
tcularly large diameters and relfatively thick walls, is mainly due
to distress at the pipeline joints (axial pull-out in tension, crushing
of bell and spigot in compression). For smaller diameter segmented
pipes, drcumferential flexural failures (round cracks) have also
been observed in areas of ground curvature.

This monogiaph reviews the behavior of buried pipeline com-
penents subject to permanent ground deformation and wave propa-
gatinn hazards, as weil as existing methods to quantify the re-
sponse. To the extent possible and where appropriate, the review
focuses on simplified procedures which can be directly used in
the seismic analysis and design of buried pipeline components,
System hehavior of a buried pipeline network is not discussed in
any great detail. Where alternate approaches for analysis or de-
sign are available, attempts are made to compare the results from
the different procedures. Finally, we attempt to benchmark the
use/. lress and relative accuracy of various approaches through
corparson with available case histories.

This monograph is divided into twelve chapters. Chapter 1 re-
views seismic hazards and the performance of buried pipelines in
past eartthquakes. Chapter 2 describes the different forms of per-
marent ground deformation (surface faulting, lateral spreading,
landshding), and presents procedures to quantify and mode! both
the amount of PGD as well as the spatial extent of the PGD zone.
Chapler 3 reviews seismic wave propagation and presents proce-
dures for estimating ground strain and curvature due to travelling
wave effects. Chapter 4 presents the failure modes and correspond-
Ing failure crileria for buried pipelines subject to seismic effects.
Chapter 5 reviews commonly used techniques to madel the soil-
nipe interaction in both the longiudinal and transverse directions.



Chapters & and 7 present the response of continuous pipelines
subject to longitudinal PGD and transverse PGD respectively, while
Chapter 8 discusses pipe response due to faulting. Chapter 9 pre-
sents the respanse of segmented pipelines subject to permanent
ground deformatian. Chapters 10 and 11 discuss the behavior of
continuous and segmented pipeline components subject to seis-
mic wave propagation. Chapter 12 presents current countermea-
sures to reduce damage to pipelines during earthquakes.
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