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8
Risk assessment

Chuck Haas and Joseph N.S. Eisenberg

This chapter introduces the technique of microbial risk assessment and outlines
its development from a simple approach based upon a chemical risk model to an
epidemiologically-based model that accounts for, among other things,
secondary transmission and protective immunity. Two case studies are
presented to highlight the different approaches.

8.1 BACKGROUND
Quantifiable risk assessment was initially developed, largely, to assess human
health risks associated with exposure to chemicals (NAS 1983) and, in its
simplest form, consists of four steps, namely:

• hazard assessment
• exposure assessment
• dose–response analysis
• risk characterisation.
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The output from these steps feeds into a risk management process. As will be
seen in later sections this basic model (often referred to as the chemical risk
paradigm) has been extended to account for the dynamic and epidemiologic
characteristics of infectious disease processes. The following sub-sections
elaborate on the chemical risk paradigm as outlined above.

8.2 CHEMICAL RISK PARADIGM

8.2.1 Hazard assessment
For micro-organisms, hazard assessment (i.e. the identification of a pathogen as
an agent of potential significance) is generally a straightforward task. The major
tasks of Quantitative Microbiological Risk Assessment (QMRA) are, therefore,
focused on exposure assessment, dose–response analysis and risk
characterisation. The task of risk management is one of deciding the necessity
of any action based upon the risk characterisation outputs, and incorporates
significant policy and trans-scientific concerns.

One outcome of the hazard analysis is a decision as to the principal
consequence(s) to be quantified in the formal risk assessment. With micro-
organisms, consequences may include infection (without apparent illness),
morbidity or mortality; furthermore, these events may occur in the general
population, or at higher frequency in susceptible sub-populations. Although
mortality from infectious agents, even in the general population, cannot be
regarded as negligible (Haas et al. 1993), the general tendency (in water
microbiology) has been to regard infection in the general population as the
particular hazard for which protection is required. This has been justified based
on a balance between the degree of conservatism inherent in using infection as
an endpoint and the (current) inability to quantify the risks to more susceptible
sub-populations (Macler and Regli 1993).

8.2.2 Exposure assessment
The purpose of an exposure assessment is to determine the microbial doses
typically consumed by the direct user of a water (or food). In the case of water
microbiology, this may necessitate the estimation of raw water micro-organism
levels followed by estimation of the likely changes in microbial concentrations
with treatment, storage and distribution to the end-user (Regli et al. 1991; Rose
et al. 1991). A second issue arising in exposure assessment is the amount of
ingested material per ‘exposure’. As a default number, two litres/person-day is
used to estimate drinking water exposure (Macler and Regli 1993), although this
may be conservative (Roseberry and Burmaster 1992). For contact recreational
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exposure, 100 ml/day has often been assumed as an exposure measure (Haas
1983a), but actual data to validate this number are lacking.

8.2.3 Dose–response analysis
It is generally necessary to fit a parametric dose–response relationship to
experimental data since the desired risk (and dose) which will serve to protect
public health is often far lower than can be directly measured in experimental
subjects (at practical numbers of subjects). Hence it is necessary to extrapolate a
fitted dose–response curve into the low-dose region.

In QMRA, for many micro-organisms, human dose–response studies are
available which can be used to estimate the effects of low level exposure to
micro-organisms. In prior work, it has been found that these studies may be
adequately described by one of two semi-mechanistic models of the infection
process. In the exponential model, which may be derived from the assumption
of random occurrence of micro-organisms along with a constant probability of
initiation of infection by a single organism (r), the probability of infection (PI) is
given as a function of the ingested dose (d) by:

(8.1)

For many micro-organisms, the dose–response relationship is shallower than
reflected by Equation 8.1, suggesting some degree of heterogeneity in the
micro-organism-host interaction. This can be successfully described by the beta-
Poisson model, which can be developed from Equation 8.1 if the infection
probability is itself distributed according to a beta distribution (Furumoto and
Mickey 1967a,b; Haas 1983b). This model is described by two parameters, a
median infectious dose (N50) and a slope parameter (α):

(8.2)

Figure 8.1 depicts the effect of the slope parameter on the dose–response
relationship; in the limit of α → ∞, Equation 8.2 approaches Equation 8.1.

)exp(1 rdPI −−=
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Figure 8.1. Comparison of exponential and beta-poisson dose–response functions.

The exponential and beta-Poisson models are two dose–response
relationships that can be developed from biologically plausible assumptions
about the infection process (Table 8.1 outlines the best-fit dose–response
parameters for these models for a number of human pathogens). A general
framework for plausible models can also be derived.

In addition to such quasi-mechanistic models, a variety of empirical models
are possible, three models which have been used (primarily in chemical risk
assessment), are the log-logistic, the Weibull, and the log-probit.

Generally, several models may fit available data in a statistically acceptable
sense, and yet provide very different estimates for the risk at an extrapolated
low dose. This situation is one that has frequently been encountered in chemical
risk assessment (Brown and Koziol 1983). In QMRA, it may be possible to test
the potential appropriateness of different dose–response functions by validating
with outbreak data.

Given a set of dose–response data, i.e. exposure of populations to various
doses of micro-organisms and measurement of response (such as infection), the
best fitting parameters of a dose–response relationship may be computed via
standard maximum likelihood techniques. The method has been illustrated for
human rotavirus (Haas et al. 1993; Regli et al. 1991) and protozoa (Rose et al.
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1991). Confidence limits to the parameters can then be found, and used as a
basis for low-dose extrapolation. It should be noted, however, that in general
dose–response studies have been conducted on healthy adults and may not,
therefore, reflect the response of the general population.

Table 8.1. Table of best-fit dose–response parameters (human)

Organism Exponential Beta Poisson Reference
k N50 α

Poliovirus I (Minor) 109.87 Minor et al, 1981
Rotavirus 6.17 0.2531 Haas et al. 1993;

Ward et al. 1986
Hepatitis A virus(a) 1.8229 Ward et al. 1958
Adenovirus 4 2.397 Couch et al. 1966
Echovirus 12 78.3 Akin 1981
Coxsackie(b) 69.1 Couch et al. 1965;

Suptel, 1963
Salmonella(c) 23,600 0.3126 Haas et al. 1999
Salmonella typhosa 3.60 × 106 0.1086 Hornick et al. 1966
Shigella(d) 1120 0.2100 Haas et al. 1999
Escherichia coli(e) 8.60 × 107 0.1778 Haas et al. 1999
Campylobacter jejuni 896 0.145 Medema et al. 1996
Vibrio cholera 243 0.25 Haas et al. 1999
Entamoeba coli 341 0.1008 Rendtorff 1954
Cryptosporidium parvum 238 Haas et al. 1996;

Dupont et al. 1995
Giardia lamblia 50.23 Rose et al. 1991

(a) dose in grams of faeces (of excreting infected individuals)
(b) B4 and A21 strains pooled
(c) multiple (non-typhoid) pathogenic strains (S. pullorum excluded)
(d) flexnerii and dysenteriae pooled
(e) Nonenterohaemorrhagic strains (except O111)

8.2.4 Risk characterisation
The process of risk characterisation combines the information on exposure and
dose–response into an overall estimation of likelihood of an adverse
consequence. This may be done in two basic ways. First, a single point estimate
of exposure (i.e. number of organisms ingested) can be combined with a single
point estimate of the dose–response parameters to compute a point estimate of
risk. This may be done using a ‘best’ estimate, designed to obtain a measure of
central tendency, or using an extreme estimate, designed to obtain a measure of
consequence in some more adversely affected circumstance. An alternative
approach, which is currently receiving increasing favour, is to characterise the
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full distribution of exposure and dose–response relationships, and to combine
these using various tools (for example, Monte Carlo analysis) into a distribution
of risk. This approach conveys important information on the relative
imprecision of the risk estimate, as well as measures of central tendency and
extreme values (Burmaster and Anderson 1994; Finkel 1990).

One important outcome of the risk characterisation process using a Monte
Carlo approach is the assessment of the relative contribution of uncertainty
and variability to a risk estimate. Variability may be defined as the intrinsic
heterogeneity that leads to differential risk among sectors of the exposed
group, perhaps resulting from differential sensitivities or differential
exposures. Uncertainty may be defined as the factors of imprecision and
inaccuracy that limit the ability to exactly quantify risk. Uncertainty may be
reduced by additional resources, for example devoted to characterisation of
the dose–response relationship. Variability represents a lower limit to the
overall risk distribution.

Two aspects of risk characterisation deserve further comment. In general, all
available dose–response information for micro-organisms (human or animal)
pertains to response to single (bolus) doses. In actual environmental (or food)
exposures, doses may occur over time (or may even be relatively continuous).
In the absence of specific data on the impact of prior exposure on risk, the
assumption used in projecting risk to a series of doses has been that the risks are
independent (Haas 1996).

8.2.5 Risk management
The results of a risk characterisation are used in risk management. The
understanding of appropriate action levels for decision-making with respect to
micro-organisms is still at an early stage (see Chapter 10). However, in the case
of waterborne protozoa, it has been suggested (in the US) that an annual risk of
infection of 0.0001 (i.e. 1 in 10,000) is appropriate for drinking water (Macler
and Regli 1993).

8.3 CRYPTOSPORIDIUM CASE STUDY
This case study follows through the process described in the previous section
and details a microbiological risk assessment focusing on Cryptosporidium in a
US city. New York City has a central water supply reservoir that receives the
flow from two watersheds (Watershed C and Watershed D). Oocyst levels have
been determined for both watersheds since 1992. Cryptosporidium was chosen
as the organism of interest since it is currently the pathogen most resistant to
disinfection (with minimal inactivation by free chlorine alone: Finch et al. 1998;
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Korich et al. 1990; Ransome et al. 1993). Hence, for Cryptosporidium, the
effluent from the final water supply reservoir provides a reasonable starting
point for estimating oocysts in the water as consumed.

To estimate the potential level of infection from Cryptosporidium present in
the watershed supplies, the following inputs are needed:

• water ingestion per day (V)
• oocyst concentration at point of ingestion (C)
• dose–response relationship for Cryptosporidium f(V × C)

In this instance, in accordance with a number of prior risk assessments, each
day of exposure (consumption of water) is considered to result in a statistically
independent risk of infection (Haas et al. 1993; Regli et al. 1991).

8.3.1 Input exposure variables
Tap-water ingestion was modelled using the log-normal distribution for total
tap-water consumption developed by Roseberry (Roseberry and Burmaster
1992). The natural logarithm of total tap-water consumption in ml/day is
normally distributed with a mean of 7.492 and standard deviation of 0.407
(corresponding to an arithmetic mean of 1.95 l/day).

Initial examination of the time series of oocyst levels monitored to date from the
two watersheds indicates a number of interesting features (Figure 8.2), namely:

• The levels of oocysts are quite variable, as is common for many
microbial data sets.

• The densities appear to be higher during the earlier portion of the
data record than in the more recent part of the data record (for
reasons that are unclear).

• There are a substantial number of samples where no oocysts were
detected. The mean detection limit for these non-detects was 0.721
oocysts/100 l.

The overall mean oocyst concentration (treating the ‘non-detects’ as zero’s)
was 0.26 and 0.31 oocysts/100 l for the watershed C and watershed D locations,
respectively. Of the 292 samples taken at each location, only 45 samples at
watershed C and 48 samples at watershed D were above individual daily
detection limits. Of these samples, only 18 and 21, respectively, were above
0.721 oocysts/100 l (the average detection level for the non-detects). This
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pattern is not unusual in protozoan monitoring data, and it presents a level of
complexity in assessing the risk posed by exposure to these organisms.

Figure 8.2. Total oocyst concentration in reservoir raw water samples.

The significant number of samples with concentrations close to or below
the average detection limit must be taken into account when estimating mean
oocyst densities and distribution. There are several methods that may be
used when dealing with below-detection-limit (BDL) data (Haas and Scheff
1990). Two basic approaches are employed here.

• Observations that are below the detection limit are treated as if
they had values equal to the detection limit, half the detection
limit, or zero. The arithmetic mean of the revised data is then
computed by simple averaging. These alternatives are called ‘fill
in’ alternatives.

• The method of maximum likelihood is used. In this approach,
the data are presumed to come from a particular distribution
(e.g. log-normal), and standard methods for analysing data with
a single censoring point are used. A likelihood function is
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formulated with a contribution equal to the probability density
function for all quantified values, and equal to the cumulative
distribution function (up to the detection limit) for all BDL
values. The values of the distribution parameters that maximise
the resulting likelihood are accepted as the best estimators.

To develop the distribution for oocyst concentrations at the point of
ingestion, all data from the two watersheds were examined. Using maximum
likelihood, and treating all observations less than or equal to 0.721
oocysts/100 l as being censored (for all censored observations, 0.721/100 l
was regarded as being the detection limit), the parameters of log-normal
distributions were determined.

Table 8.2 shows the parameters of the best fitting log-normal distributions
to the entire data record at each station. There is some underprediction at the
extreme tails of the distribution; however, in general the fit is adequate.
Investigation of alternative distributions (gamma, Weibull, and inverse
Gaussian) did not yield fits superior to the log-normal distribution. The
goodness of fit to the log-normal was acceptable as judged by a chi-squared
test.

Table 8.2. Mean and standard deviation of best-fitting normal distribution for natural
logarithm of oocyst levels (/100 l) in reservoir samples (January 1992 to June 1998)

Watershed C Watershed D
Mean natural logarithm –2.752 –3.210
Std. deviation of natural log 1.828 2.177

Table 8.3 summarises the arithmetic average from both watersheds, using
maximum likelihood and the various fill-in procedures (for 1992 and 1998,
these averages are for portions of the year). The ‘imputed arithmetic mean’
is computed from the maximum likelihood estimates (MLEs). In more recent
years, it was not possible to estimate the maximum likelihood mean densities
at both locations and all times, since too few (<2) observations above the
detection limit were available.
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Table 8.3. Summary of mean oocyst levels (/100 l) estimated by different methods

All
years

1992 1993 1994 1995 1996 1997 1998*

Watershed C
Imp. arith mean 0.33 0.62 1.36 0.26 0.16
Detection limit 0.85 0.72 1.46 0.78 0.73 0.70 0.72 0.72
Half det limit 0.55 0.59 1.30 0.48 0.39 0.36 0.36 0.36
Zero det limit 0.25 0.46 1.13 0.18 0.05 0.01 0 0
Watershed D
Imp. arith mean 0.43 1.80 1.35 0.47
Detection limit 0.89 1.14 1.55 0.91 0.70 0.70 0.69 0.72
Half detection 0.60 0.96 1.41 0.62 0.36 0.36 0.36 0.36
Zero det limit 0.30 0.78 1.26 0.33 0.01 0.01 0.02 0
* Jan – June Imp. – Imputed det. - detection

The bias due to ‘fill-in’ methods using the detection limit and half the
detection limit is quite evident in the more recent years, where the oocyst
levels were generally below detection. Both of these ‘fill-in’ methods may
overestimate total oocyst concentration in the source water. Regardless of
the methods used, it is apparent that 1992 and 1993 had higher average
oocyst levels than in more recent years.

In order to assess exposure, the concentrations of oocysts from each
watershed were flow-weighted (to allow for relative contributions) and then
combined.

The dose–response relationship for infection of human volunteers with C.
parvum oocysts has been found to be exponential with a best-fit dose–
response parameter (k) equal to 238 (Table 8.1). The confidence distribution
to the dose– response parameter k can be determined by likelihood theory
(Morgan 1992). The confidence distribution to the natural logarithm of k is
then found to be closely approximated by a normal distribution with mean of
5.48 and standard deviation of 0.32.

8.3.2 Results
Given a single value of water consumption (V), oocyst concentration (C), and
the dose–response parameter (k), the risk of infection to an individual can be
calculated. To consider the distribution of risk, which incorporates uncertainty
and variability in each of the input parameters, this calculation needs to be
performed a large number of times (Monte Carlo analysis). In this technique a
new set of random samples (for water consumption, oocyst concentration at
each location, and the dose–response parameter) is obtained, and then individual
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calculations using these sets of random samples are combined to reveal an
estimated distribution of risk.

Two types of results are presented below. First, the daily risk estimate is
calculated for each individual year (to observe trends in risk over time), given a
single water dose, dose–response parameter, and average oocyst concentration.
Four oocyst concentrations are used, representing the different methods for
considering data points below the detection limit. The purpose of this exercise is
to observe trends in the risk estimate over time. The second set of results shows
the range of estimated risk, taking into account uncertainty in all of the input
parameters. This range is generated using the combined data from 1992–8.

8.3.2.1 Point estimates
Point estimates for the daily risk of infection from Cryptosporidium are
presented in Table 8.4. The four columns represent different methods used to
determine the average oocyst concentration, i.e. maximum likelihood and by the
three ‘fill in’ methods. A figure of 1.95 l/day was used for the amount of water
consumed and k was set equal to 238. The calculation was done using both the
total (1992–8) data set and for each year individually.

Table 8.4. Computed point estimates for the daily risk of infection from Cryptosporidium
(× 10–5)

Imputed
arith. mean

Fill in methods

Detection limit Half detection
limit

Zero detection
limit

All
Years

3.2 7.1 4.7 2.3

1992 10.7 7.8 6.5 5.3
1993 10.8 12.2 10.9 9.7
1994 3.1 6.9 4.6 2.2
1995 – 5.7 3.0 0.2
1996 – 5.7 2.9 0.1
1997 – 5.6 2.9 0.1
1998* – 5.6 2.9 0

* (Jan – June)
(–) could not be estimated since fewer than two quantified observations are available

8.3.2.2 Monte Carlo simulation
While useful, point estimates of risk do not reveal the degree of uncertainty in
the risk estimate. To do this, Monte Carlo simulations are necessary. Summary
statistics on 10,000 iterations of the Monte Carlo model are shown in Table 8.5.
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For this computation, the entire (1992–8) oocyst monitoring database was used
as the water density distribution. The mean individual daily risk is estimated as
3.42 × 10–5.

It should be noted that the results of the Monte Carlo analysis bracket the
range of point estimates observed by considering each year’s data set separately,
whether maximum likelihood or ‘fill-in’ methods are used.

Table 8.5. Summary of Monte Carlo trials. Daily risk of Cryptosporidium infection (×
10–5)

Statistic Individual daily risk
Mean 3.4
Median 0.7
Standard deviation 19.8
Lower 95% confidence limit 0.034
Upper 95% confidence limit 21.9

As part of this computation, a sensitivity analysis was conducted. The rank
correlation of the individual daily risk with the various input parameters was
computed. The densities of pathogens in the two effluent flows from the
reservoir were found to have the greatest correlation with the estimates daily
risk. The other inputs (water consumption and dose–response parameter)
contributed only a minor amount to the uncertainty and variability in the
estimated risk. Attention, therefore, should be paid primarily to obtaining better
(more precise) estimates of the effluent oocyst concentrations.

8.3.3 Caveats
The above risk assessment has a number of caveats that should be taken into
account when developing a decision based on these results.

• use of healthy volunteer data (based upon a single strain of
Cryptosporidium)

• no account of secondary infection
• no data on oocyst viability or infectivity
• poor oocyst recovery rates
• choice of endpoint (illness may be a more important endpoint than

infection).
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8.3.4 Case study conclusions
An annual risk of infection of 1 in 10,000 (which has been suggested by the
EPA as an acceptable level for drinking water exposure to an infectious agent)
corresponds to a daily risk of 2.7 × 10–7 per person. This is below the lower
95% confidence limit to the estimated daily risk for New York based upon the
calculations above. It is also below the point estimates for risk when individual
years of data are treated separately. Hence, based on the assumptions used, the
current risk of cryptosporidiosis infection would appear to be in excess of the
frequently propounded acceptable risk level.

Microbial risk assessments should be coupled with investigation of potential
future treatment decisions and watershed management strategies. For example,
if information on the performance of such strategies with respect to reduction of
oocyst levels is available, then the potential impact on microbial infections can
be assessed. Given standard treatment efficiencies, the addition of a properly
functioning water filtration plant would reduce the estimated daily and annual
risk of Cryptosporidium infection by a factor of 100.

8.4 A DYNAMIC EPIDEMIOLOGICALLY-BASED
MODEL

As outlined in the previous sections, attempts to provide a quantitative
assessment of human health risks associated with the ingestion of waterborne
pathogens have generally focused on static models that calculate the probability
of individual infection or disease as a result of a single exposure event (Fuhs
1975; Haas 1983b; Regli et al. 1991). The most commonly used framework is
based upon a chemical model and, as such, does not address a number of
properties which are unique to infectious disease transmission, including:

• secondary (person-to-person) disease transmission
• long- and short-term immunity
• the environmental population dynamics of pathogens.

The limitations of treating infectious disease transmission as a static disease
process, with no interaction between those infected or diseased and those at
risk, has been illustrated in studies of Giardia (Eisenberg et al. 1996), dengue
(Koopman et al. 1991b), and sexually transmitted diseases (Koopman et al.
1991a). The transmission pathways for environmentally mediated pathogens are
complex. These disease processes include person-to-person, person-to-fomite
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to-person, person-to-water-to-person as well as food routes for those pathogens
that only have human hosts, and they include animal–animal or animal–human
pathways for those that have animal reservoirs. To understand the role that
water plays in the transmission of enteric pathogens and to estimate the risk of
disease due to drinking water within a defined population, it is important to
study the complete disease transmission system.

As mentioned previously, models using the chemical risk paradigm are static
and assess risks at the individual level; i.e. the risk calculation is the probability
that a person exposed to a given concentration of pathogens will have an
adverse health effect. The underlying assumption in this calculation is that
disease occurrences are independent; that is, the chance of person A becoming
infected is independent of the prevalence of disease within the population.
Although this assumption is valid for disease associated with chemical
exposure, in general, it is not universally appropriate for infectious disease
processes. The risk of person A becoming infected is not only dependent on his
direct exposure to environmental pathogens but also on exposure to other
currently infected individuals (group B). Some of the group B individuals may
have been infected from a previous exposure to an environmental pathogen.
Therefore, in addition to direct risks of exposure, person A is indirectly at risk
due to any previous exposures from group B. One implication of this secondary
infection process is that risk is, by definition, manifested at a population level.
Specifically, an individual is not only at risk from direct exposure to a
contaminated environmental media, but also from interactions within the
population that can result in exposures to infected individuals. Another
implication of this secondary infection process is that risk calculations are
dynamic in nature; i.e. the overall risk calculation is based not only on current
exposures to a contaminated media, but also on all subsequent secondary
infections.

The existence of other epidemiological states of the disease process may
also affect risk estimates; e.g. post-infection status that accounts for previous
exposure to the pathogen, and a carrier status that accounts for those who are
asymptomatic but infectious. Post-infection status may take on different
forms from long-term and complete protection to short-term and partial
protection. Therefore, at any given time there may exist a portion of the
population that is not susceptible to disease. Moreover, the protected portion
of the population will vary in time depending on the prior prevalence levels.
Asymptomatic carriers provide another potential source of infection through
contact with the susceptible portion of the population. This portion of the
population also varies in time.
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8.5 CASE STUDY: ROTAVIRUS DISEASE PROCESS
Given the discussion above, we can conceptualise an epidemiologically-based
characterisation of risk by dividing the population into distinct states with
respect to disease status. States may include susceptible, diseased (infectious
and symptomatic), immune (either partial or complete), and/or carrier
(infectious but asymptomatic). Further, it can be understood that members of the
population may move between states. Factors affecting the rate at which
members move between states include:

• the level of exposure to an environmental pathogen;
• the intensity of exposure to individuals in the infectious or carrier

state;
• the temporal processes of the disease (e.g. incubation period,

duration of disease, and duration of protective immunity, etc.).

This conceptual model is inherently dynamic and population-based; i.e. the
risk of infection is manifested at the population level. Thus, consistent with the
above concepts, the initial steps prescribed by the infectious disease framework
are to identify the important states for a given pathogen or class of pathogens
and then develop a diagram of causal relationships among these states. From an
epidemiological point of view, the population is divided into distinct states with
respect to disease. Historically, when developing these types of compartmental
models, members of a population have been classified as susceptible, infected,
or recovered. For a pathogen such as rotavirus, however, a simple ‘susceptible–
infected–recovered’ type model may not be sufficient to characterise the
movement of the population between states. A more detailed model structure is
motivated by the following properties:

• Some protection can be attained after exposure to rotavirus;
however, this protective state appears to be neither absolute nor
long-term; and

• It is well documented that it is possible (and in fact is common)
to be infected with rotavirus without demonstrating the
symptoms of the disease.

From these properties, one possible categorisation of the population with
respect to the rotavirus disease process is:
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• a susceptible state (S), defined by individuals susceptible to infection
• a carrier state (C), defined by individuals who are infectious but not

symptomatic
• a diseased state (D), defined by individuals who are symptomatic

and infectious
• a post-infection state (P), defined by individuals who are not

infectious and not susceptible due to (limited and short-term)
immunity.

Members of a given state may move to another state based on the causal
relationships of the disease process. For example, members of the population
who are in the susceptible state may move to the diseased state after exposure to
a pathogenic agent. This is shown in Figure 8.3.

Figure 8.3. Conceptual model for rotavirus. (State variables: S = Susceptible = Not
infectious, not symptomatic; C = Carrier = Infectious, not symptomatic; D = Diseased =
Infectious, symptomatic; P = Post Infection = Not infectious, not symptomatic, with
short-term or partial immunity.)
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To describe the epidemiology of rotavirus, the conceptual model includes
both state variables and rate parameters. State variables (S, C, D, and P) track
the number of people that are in each of the states at any given point in time,
and are defined such that S + C + D + P = N (the sum of the state variables
equals the total population). The rate parameters determine the movement of the
population from one state to another. In general, the rate parameters are denoted
as β, σ, and γ with appropriate subscripts, where:

• β is the rate of transmission from a non-infectious state, S or P, to
an infectious state, C or D. These transmission rate parameters
describe the movement between states due to both primary
(drinking water, for example) and secondary (all other) exposure to
rotavirus;

• σ is the rate of recovery from an infectious state, C or D, to the
post-infection state, P; and

• γ is the rate of movement from the post-infection state (partial
immunity), P, to the susceptible state, S.

The rate parameters may be determined directly through literature review,
may be functions of other variables that are determined through literature
review, or may be determined through site-specific data where possible and
appropriate. One technical aspect of the approach described is that the
distribution of time that members of the population spend in each of the states is
assumed to be exponential (this may not always be the case and can easily be
addressed; see for example Eisenberg et al. 1998).

The model describes movements of the population between states. Consider
the susceptible portion of the population during a particular point in time. As
shown in Figure 8.3, upon exposure to rotavirus three processes affect the
number of susceptible individuals within the population:

• some members of the population will move from the susceptible
state S to the carrier state C (at rate βSC)

• some members will move from the susceptible state S to the
diseased state D (at rate βSD)

• other members of the population will move from the post-infection
state P back to the susceptible state S (at rate γ).

Analogous processes account for movement of the population between all
of the states shown in Figure 8.3. Mathematical details of this model are
described in detail elsewhere (Eisenberg et al. 1996, 1998; Soller et al. 1999).
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8.5.1 Implementation
Using a modified version of the ILSI (International Life Sciences Institute)
microbial risk framework, the implementation of a conceptual model, such as
the rotavirus model, to assess the associated human health risks follows a three
step process; problem formulation, analysis, and risk characterisation (ILSI
1996). This process is summarised graphically in Figure 8.4.

Figure 8.4. Schematic application of the ILSI framework.

8.5.1.1 Problem formulation and analysis
In addition to the development of a conceptual model in the problem
formulation phase, a literature review is generally conducted to obtain relevant
data. Initial host and pathogen characterisations are also developed.

The goal of the analysis phase is to link the conceptual model with the risk
characterisation. This process is carried out by summarising and organising the
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data obtained from the problem formulation, resulting in an exposure- and host-
pathogen profile that succinctly summarises data relevant to the specific
problem.

8.5.1.2 Risk characterisation
In the risk characterisation phase, the exposure and host pathogen profiles are
integrated to quantify the likelihood of adverse health effects due to the
exposure of microbial contaminants, within the context of the uncertainties in
the data and the assumptions used in the quantification process. The risk
characterisation also features a data integration step. As described previously,
the conceptual model is composed of both state variables and rate parameters.
Data integration is the process by which the rate parameters are quantified in
terms of probability distributions using available data as a foundation. Once
the data integration step is complete, a series of simulations is conducted. A
Monte Carlo simulation technique is incorporated to account for the
uncertainty and variability inherent in this environmental system. The result
of the simulations is a statement of risk or relative risk associated with the
specific problem being addressed. Figure 8.5 illustrates how the results of
these simulations can be represented.

Box plots were used to summarise each of the four scenarios shown in the
graph. The first two scenarios represent the average daily prevalence of a
hypothetical baseline condition for children and adults respectively. The third
scenario represents children exposed to an increased contamination in drinking
water compared with the baseline, and the fourth scenario represents children
exposed to a decreased contamination. It is important to keep in mind that this
graph is for illustrative purposes only and does not represent an actual risk
assessment. With this in mind, the following information can be obtained from
this plot:

• the degree of uncertainty associated with each scenario is quite
large

• children experience a greater disease burden than adults
• even for very low levels of water contamination an endemic

condition exists.

A detailed description of the data integration and risk characterisation
processes is summarised in Eisenberg et al. (1996).
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Figure 8.5. Comparison of average daily prevalence for children (1), adults (2), under
baseline conditions, and for children exposed to both higher levels (3) and lower levels
(4) of contamination in drinking water.

8.6 DISCUSSION
A comprehensive risk assessment methodology should account for all the
important processes that affect the resultant risk estimate. One important
property of an infectious disease process is the ability of an infected person to
infect a susceptible person through direct or indirect contact. To rigorously
incorporate this aspect of the disease transmission process, the risk calculation
must account for these indirect exposures through contacts with infected
individuals. The post-infection process is another property that can affect the
risk estimate, since at any given time there is a group of individuals that are
not susceptible to reinfection (due to previous exposures to the pathogen).

While the infectious disease process is inherently population-based and
dynamic, there may be times when simplifying assumptions may be made,
and the chemical risk paradigm may be appropriate. One valuable feature of
the methodology presented in the rotavirus case study is that the structure can
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collapse into a framework analogous to the chemical risk framework (seen in
previous sections) when the secondary infection rate is negligible, protection
from future infection due to pathogen exposures is unimportant, and the
infection process is static.

Dynamic disease process models have been used in a variety of
applications. For example, Eisenberg et al. (1998) used this methodology to
study the disease dynamics of a Cryptosporidium outbreak. In that study, the
outcome was known and was used to determine the conditions that may have
accounted for the specific outbreak. In another investigation, the same
methodology was used to explore the uncertainties in assessing the risk of
giardiasis when swimming in a recreational impoundment using reclaimed
water (Eisenberg et al. 1996). In both of these studies the dynamic,
population-based modelling framework was a valuable tool for providing
information about the disease process in the context of uncertainty and
variability.

8.7 IMPLICATIONS FOR INTERNATIONAL
GUIDELINES AND NATIONAL REGULATIONS

In conjunction with epidemiology and other data sources, risk assessment can
be a very powerful tool. As well as being used in partnership with
epidemiology it can also provide useful insights into areas such as rare events
and severe disease outcomes where epidemiology is not appropriate. The ease
with which parameters can be changed within a risk assessment makes it ideal
to inform both international guidelines and standards derived from specific
national circumstances. It can also be used to test ‘what if’ scenarios, which
may help target management interventions. However, the technique does have
limitations and it is vital that assumptions are calibrated against real data and
it is not seen simply as a substitute for other techniques. As with any model
the outputs are, at best, only as good as the inputs.
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