
DESLIZAMIENTOS Y ALUVIONES EN EL PERU

Ing.Luis Chang Chang Dr.Jorge E.Alva Hurtado

Laboratorio Geotécnico Centro Peruano-Japonés de Investigaciones Sísmicas y Mitigación de Desastres

Facultad de Ingeniería Civil Universidad Nacional de Ingeniería Lima Perú

PRESENTACION

El presente informe tiene el propósito de presentar el estudio de recolección de datos de inventario sobre procesos de inestabilidad de taludes y aluviones ocurridos en el Perú, realizado por el Laboratorio Geotécnico del CISMID en años anteriores. El informe está basado en parte del material presentado por el ing. Luis Chang Chang como tesis de grado en la Facultad de Ingeniería Civil de la Universidad Nacional de Ingeniería de Lima, Perú, bajo el asesoramiento del Dr. Jorge E. Alva Hurtado.

Debe manifestarse que todos y cada uno de los reportes revisados y recopilados sobre los problemas de estabilidad de taludes y aluviones se encuentran a disposición de los interesados en el Banco de Datos sobre Deslizamientos y Aluviones del Laboratorio Geotécnico del CISMID.

Este informe también tiene como propósito el contribuir como parte peruana al estudio que realiza el Comité Suramericano de Movimientos en Masa, a cargo de la Sociedad Colombiana de Geotecnia, sobre los Fenómenos de Remoción en Masa. Los resultados de dicho estudio serán presentados en el IX Congreso Panamericano de Mecánica de Suelos e Ingeniería de Fundaciones en Viña del Mar, Chile, en Agosto de 1991.

Se agradece muy sinceramente el apoyo económico brindado por la Agencia de Cooperación Internacional de Japón (JICA) para la publicación de este informe, sin el cual no hubiera sido posible lograr su impresión.

Los Autores

TABLA DE CONTENIDO

	Pa
INTRODUCCION	3
CAPITULO 1 : DESCRIPCION DE LO FENOMENOS OCURRIDOS EN EL PERU	
1.1 EL DESLIZAMIENTO DEL CERRO "CONDOR SENCCA"	6
1.1.1 Ubicación	6
1.1.2 Evidencias de Obstrucciones Anteriores	6
1.1.3 Frecuencia de Obstrucciones	7
1.1.4 Cronología del Derrumbe del Cerro "Cóndor Seneca"	8
1.1.5 Características del Derrumbe	10
1.1.5.1 La Represa y La Laguna	11
1 .1.5.2 Causas Geológicas del Derrumbe	12
1.2 EL DESLIZAMIENTO DE MAYUNMARCA	12
1.2.1 Geografiá y Geología	12
1.2.2 Condiciones Hidrogeológicas que Determinan el Deslizamiento en Mayunmarca	16
1.2.3 Rasgos	17
1.2.3.1 Rasgos Fisiográficos	17
1 2.3.2 Rasgos Geológicos	19
1.2.4 Comportamiento de las Rocas	21
1.2.4.1 Rocas Metamórficas	21
1.2.4.2 Rocas Sedimentarias Mitu	21

1.2.5	Incompa	atibilidad de las Rocas y Zonas Críticas	22
	1.2.5.1	Incompatibilidad de las Rocas	22
	1.2.5.2	Zonas Críticas	22
1.2.6	Geodiná	mica de la Región	23
	1.2.6.1	Estabilidad de Taludes	23
	1.2.6.2	Agrietamientos	24
	1.2.6.3	Deslizamientos	24
	1.2.6.4	Flujo de Barro	24
1.2.7		de los Primeros Deslizamientos Ocurridos le del Mantaro	24
1.2.8	El Desli:	zamiento en la Quebrada Ccochacay	25
	1.2.8.1	Causas del Deslizamiento	27
	1282	Análisis de la Mecánica del Deslizamiento	29
	1.2.8.3	El Posible Mecanismo de Deslizamiento	31
	1.2 8.4	Embalse del Lago por el Deslizamiento	32
	1.2.8.5	Rebosamiento y Rompimiento de la Presa	32
	1.2.8.6	Descenso del Lago	33
	1.2.8.7	Efectos Aguas Abajo	33
	1.2.8.8	Volcanes de Limo-Arena	34
	1.2.8.9	Litologia del Material de Deslizamiento en el Cauce del río Mantaro	34
	1 2.8.1	0 Estudio del Modelo Hidráulico	35
	1.2.8.1	1 Aspectos Sismológicos	36

1.3 EL SISMO DEL 31 DE MAYO DE 1970	38
1.3.1 Ubicación del Area Afectada	38
1.3.2 Historia Sísmica	39
1.3.3 El Sismo y sus Réplicas	40
1.3 4 Intensidad	42
1.3.5 Origen de la Avalancha	42
1.3.6 Recorrido de la Avalancha	43
1.3.7 El Sismo y la Avalancha	44
1.3.8 Avalancha de Escombros del Huascarán en el Area de Yungay y Ranrahirca	45
1.3.9 Gasto Sólido de Material	48
1.3.10 Volumen y Características del Material	48
1.3.11 El Represamiento en la Quebrada de Llanganuco	49
1.3.12 Efecto Aguas Abajo de Yungay	49
1.3.13 Geología del Area Afectada	50
1.3.14 Estudio Geológico y Fisiográfico	51
1.3.14.1 Cordillera Blanca	51
1.3.14.2 Cordillera Negra	52
1.3.15 Cambios Geodéticos y Maremotos	52
1.3.16 Daños Estructurales y Geológicos	53
1.3.16.1 Huaraz	53
1.3.16.2 Caraz	53
1.3.16.3 Carhuaz	53
1.3.16.4 Chimbote	54
1.3.16.5 Huarmey	55
1.3.16.6 Trujillo	55

1.3.16.7 Salaverry	55
1.3.16.8 Huallanca	56
1.3.16.9 Casma	56
1.3.16.10 Paramonga	56
1.4 DESLIZAMIENTO ROTACIONAL DE RECUAY	57
1.4.1 Ubicación	57
1.4.2 Condiciones Geológicas de la Zona	57
1.4.2.1 Estratigrafía	57
1.4.2.2 Formaciones Rocosas Locales	57
1.4.3 Depósitos Cuaternarios Recientes	58
1.4.3.1 Fluvio-Glaciares (Q fg)	58
1.4.3.2 Horizontes de Conglomerados	58
1.4.3.3 Suelo de Corrimientos Antiguos (Sca)	58
1.4.3.4 Sedimentos Lacustres (Q1)	59
1.4.3.5 Travertinos (Qt)	59
1.4.3.6 Terrazas Fluviales (T-1, T-2)	59
1.4.3.7 Depósitos Fluvio-Gravitativos (Qg)	60
1.4.4 Efectos Sísmicos	60
1.4.4.1 Deslizamiento Antiguo	60
1.4.4.2 Deslizamientos Recientes	60
1.5 ALUVION EN CHAVIN DE HUANTAR	62
1.5.1 Origen	62
1.5.2 El Aluvión	62

1.5.3 Area Afectada	62
1.5.4 Geología	63
1.5.4.1 De la Cabecera	63
1.5.4.2 De la Quebrada	64
1.5.5 Causas del Aluvión	64
1.6 EL "ALUD-ALUVION" DE RANRAHIRCA	64
1.6.1 El Medio Geográfico	64
1.6.2 Morfología y Topografía del Valle Aluviónico	65
1.6.3 El Aluvión y sus Características	65
1.6.3.1 Volumen	67
1.7 EL ALUVION DE HUARAZ	67
1.7.1 El Aluvión	67
1.7.2 Fisiografía y Geología Regional	68
1.7.3 Geología Glacial	68
CAPITULO 2 : CARTOGRAFIA EXISTENTE CON RELEVANCIA DESLIZAMIENTOS Y ALUVIONES	A
2.1 Introducción	70
2 2 Mapa Físico del Peru	70
2.3 Mapa Geológico Generalizado del Perú	71
2.4 Mapa Meteorológico del Perú	71
2.5 Mapa de Temperatura Media Anual	71
2.6 Mapa de Máximas Intensidades Sísmicas	72

CAPITULO 3 : INVENTARIO DE DESLIZAMIENTOS Y ALUVIONES EN EL PERU

3.1 DESLIZAMIENTOS Y ALUVIONES POR GRAVEDAD EN EL	
PERU	73
3.1.1 Introducción	73
3.1.2 Documentación Básica	73
3.1.3 Catálogo de Deslizamientos y Aluviones	73
3.1.4 Conclusiones	111
3.2 DESLIZAMIENTOS Y ALUVIONES POR SISMOS EN EL PERU	112
3.2.1 Introducción	112
3.2.2 Documentación Básica	112
3.2.3 Cronología de los Deslizamientos por Sismos	112
3.2.4 Conclusiones	120
CAPITULO 4 : CONCLUSIONES Y RECOMENDACIONES	
4.1 Conclusiones	121
4.2 Recomendaciones	123
BIBLIOGRAFIA	124
FIGURAS	
MAPAS	

INTRODUCCION

El presente informe es una contribución al Banco de Datos sobre Desastres Naturales que debe existir en el Perú. Se refiere principalmente a la recopilación de información disponible sobre los fenómenos de deslizamientos y aluviones en el país.

Estos fenómenos suceden frecuentemente, incidiendo de manera drástica en nuestra economía. Desde el mes de diciembre su presencia se hace notoria en los valles, prolongándose hasta abril, con algunas excepciones en los meses centrales del año.

La mayor incidencia del fenómeno de deslizamientos y aluviones está en la sierra y selva alta, por las condiciones existentes de topografia, geología y clima. En este informe se presenta de manera resumida dichas condiciones y mediante un mapa se localizan los fenómenos recopilados para denotar las áreas sensibles a estos fenómenos.

En el Capítulo 1 se presenta una descripción de los fenómenos más importantes de deslizamientos y aluviones ocurridos en el país, que han concitado atención internacional. Estos fenómenos se describirán brevemente a continuación:

Deslizamiento del Cerro "Cóndor Sencca", que ocurrió el 16 de Agosto de 1945, en Ayacucho. Este deslizamiento de roca de naturaleza granodiorítica, localizado en la margen derecha del rio Mantaro, movilizó más de 5 milliones de metros cúbicos y formó una presa natural de más de 100 m. de altura, dando lugar a un lago de 16 km. de largo y 96 m. de profundidad. El ancho de la base fue de 579 m. y en la cresta fue de 70 m. El deslizamiento se debió a varios factores, tales como: falla por corte, erosión y pérdida progresiva de resistencia de la roca a la carga por deformación. Fuchs (1945), opinó que la desecación de las arcillas que se encontraban rellenando las diaclasas fue la causa principal del deslizamiento.

Deslizamiento en Mayunmarca, que sucedió el 25 de Abril de 1974 en Huancavelica, arrasando a una velocidad de 140 km/h en 3 minutos la hacienda Mayunmarca y sepultando las haciendas Coochacay y Huaccoto. En este deslizamiento perdieron la vida más de 460 personas. Al producirse el embalse del rio Mantaro se destruyeron tierras de cultivo y carreteras hasta 30 km. aguas arriba del dique. El dique túvo 3,800 m. de longitud, 2,550 m. de ancho y 170 m. de altura. Después del desembalse de 670 millones de metros cúbicos se destruyeron 76 km. de carreteras, la hacienda Perseverancia, parte del pueblo de Mayoc y numerosos puentes. Los factores que favorecieron la ocurrencia de este fenómeno fueron las mismas condiciones ambientales, geológicas, topográficas, las precipitaciones y las fallas.

El aluvión de Yungay y Ranrahirca, que tuvo lugar el 31 de mayo de 1970. Se produjo a consecuencia del sismo de la misma fecha. Se desprendió una parte de la comisa del pico norte del nevado Huascarán, con una masa calculada de I millón de metros cúbicos que tuvo una caída libre de 1,000 m. hasta el piso del valle Llanganuco, desplazándose por la quebrada Shacsha a 400 km/h. El material acarreado hasta el río Santa fue de 244 millones de m³, represando momentáneamente al río y sepultando a los pueblos de Yungay y Ranrahirca.

El deslizamiento rotacional en Recuay que ocurrió durante el sismo del 31 de Mayo de 1970 fue la reactivación de un deslizamiento antiguo. La traza de la escarpa de deslizamiento alcanzó 1 km. de largo y el desplazamiento vertical varió desde 0.50 m. hasta 15 m. El deslizamiento estuvo asociado a una falla, cuya traza pasaría cerca de la margen izquierda del rio Santa. El rio Santa fue represado parcialmente.

El aluvión de Chavín de Huantar tuvo lugar el 17 de Enero de 1945, debido a un repentino deslizamiento de roca y hielo del cerro Huatsán, que desplazó el agua de las lagunas Ayhuiñaraju y Carhuacocha en las nacientes del valle, ocasionando la muerte de numerosos pobladores.

El aluvión de Ranrahirca sucedió el 10 de Enero de 1962, por el desprendimiento de una parte de la cornisa SO del pico norte del nevado Huascarán. El fenómeno tuvo una velocidad de 100 km/h, llegando al valle del Santa con una velocidad de 30 km/h en un trayecto de 16 km. y un desnivel de 4 km. Desplazó de 10 a 12 millones de m³, cubriendo el valle con un material de 3 a 4 m. de espesor y en el cono de deyección con 2m. La superficie cubierta se estimó en 440 Has.

El aluvión de Huaraz se produjo el 13 de Diciembre de 1941. La ruptura del dique de la laguna Cojup a 4,500 m.s.n.m. originó la avalancha de grandes masas de hielo y agua que se desplazaron con gran velocidad hacia la laguna Jircacocha a 4,120 m.s.n.m. formando olas gigantescas que destruyeron la presa morrénica. El aluvión arrastró entre 8 y 10 millones de m³, causando la destrucción parcial de Huaraz y arrasando las viviendas ubicadas a lo largo del valle Quilcayhuanca.

En el Capítulo 2 se presenta la cartografía existente en el Perú, que es relevante a los fenómenos de deslizamientos y aluviones. Se presenta el mapa físico político publicado por el Instituto Geográfico Nacional, con áreas de distinta altura; el mapa geológico generalizado, publicado por el Servicio de Geología y Minería; los mapas meteorológicos con la distribución de precipitaciones en milímetros cada tres meses, publicados por el Servicio Nacional de Hidrografía y Navegación de la Marina de Guerra del Perú; el mapa de la temperatura media anual publicado en la colección Gran Geografía del Perú y el mapa de máximas intensidades sísmicas observadas en el Perú del Proyecto Sisra.

En el Capítulo 3 se presenta el inventario de los fenómenos de deslizamientos y aluviones ocurridos en el Perú. Cada evento tiene una referencia bibliográfica que constituye parte del Banco de Datos. El catálogo de deslizamientos y aluviones ha sido dividido en fenómenos causados por la acción de la gravedad y fenómenos causados por sismos. Se presentan en consecuencia dos mapas distintos a la escala 1:4'000,000.

En el Capítulo 4 se presentan las conclusiones y recomendaciones del estudio. Los fenómenos recopilados ocurren con mayor frecuencia entre los 2000 y 4000 m.s.n.m., dependiendo de las condiciones locales de topografía, geología, clima y acción sísmica. Se recomienda continuar los estudios tendientes a conocer sus causas y controlar su magnitud y efectos, para reducir las pérdidas humanas y los daños materiales.