EFFECTS OF SOFT SOIL ON BUILDING RESPONSE IN MEXICO CITY
G. Waas!
ABSTRACT

Ground motions recorded in Mexico City on Sept. 19, 1985 are compared with results from soil
amplification analyses using one- dimensional theory. Resonant effects between soil layers and a
typical 10-floor office building are illustrated by analysis. The influence of pile foundations on the
response of buildings is addressed. An analysis method for pile groups subjected to earthquake
motion is outlined, which handles layered soil and pile-soil-pile interaction.

INTRODUCTION

The recent earthquake of Loma Prieta in California at Oct. 17, 1989 has demonstrated again that
earthquake damage tends to be larger on soft soil than on stiff ground. There are several reasons
for this: Subsidence of loose granular soils or liquefaction of water-satured sands and silts may add
to the distress of the shaken structures. Soft soil layers over stiffer strata amplify the ground
motion in certain frequency ranges. This latter affect has never been more pronounced than in the
great quake of September 19, 1985 in Mexico City, where it led to the collaps of hundreds of tall
buildings located on the tick clay layers in the center of the city, whereas no damage was observed
in the areas with hard ground.

This paper presents results from one-dimensional wave propagation theory applied to typical soil
profiles in the center of Mexico City. It illustrates the observed resonance of highrise building with
the fundamental natural frequency of the clay layers and it addresses soil-structure interaction of
pile foundations and its effect on building response.

SOIL AMPLIFICATION
In the earthquake of Sept. 19, 1985 ground accelerations in Mexico City reached only 0,3 to 0,4
m/s® on hard ground as recorded at Ciudad Universitaria (CU) and Tacubaya (Tac), whereas on
the soft clay deposits in the center of the city peak ground accelerations between 1 and 2 m/s were

measured.

The amplification of horizontal ground motion may be explained qualitatively and also
quantitatively and also quantitatively by simple one-dimensional wave theory. Vertically
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propagating shear waves are considered which are generated by predominantly long period motion
of the rock strata underlying the gravel, sand and clay layers. The two different profiles shown in
Fig. 1 are used; they were originally developed by Rosenblueth [2] in 1969 for a similar study. The
two top layers represent very soft and soft clay layers followed by sand and gravel and partially
cemented valley sediments.

As input motion at the bottom of the profiles, the acceleration time histories recorded at CU and
Tac are applied as waves impinging vertically from below. The amplitudes of the incident waves
are taken as half of those recorded at CU and Tac. Thus the doubling of amplitudes of vertically
propagating waves by reflection at the free ground surface (at CU and Tac) is taken into account.

Figure 2 shows the acceleration response spectra at 5% damping for the motion at CU an Tac and
for the motion at the top of the two soil profiles as computed using the CU and Tac accelerations
as input at the base of the profiles. Also shown in Fig. 2 is the spectrum for the acceleration
recorded at ground surface near the Secretaria de Comunicaciones y Transportes (SCT) on a soil
profile typical for the center of the city.

The comparison of the spectra for hard ground and soft soil shows an amplification of 5 to 6 at low
periods and of roughly 10 to 20 at the period of 2 seconds. Near this period the soil profiles show a
pronounced resonant period. The spectra of the motion computed by the one-dimensional wave
propagation theory agree quite well with the spectrum of the acceleration recorded at the SCT.
The fundamental period at around two seconds and the height of the response peak is well
matched by the simple theory using profiles with data that appear consistent with actual soil
profiles and measured soil properties.

Based on similar analyses using different values for the thickness and shear wave velocity of the
sand and gravel deposits, it is tentatively concluded that the deposits underlying the clay layers may
have a significant effect on the amount of amplification at periods around 2 seconds. The very
large motion 1n the center of Mexico City may possibly result from resonant effects due to similar
natural periods of the clay layers and the underlying sediment.

RESONANCE OF BUILDINGS AND GROUND VIBRATIONS

The fact that tall buildings with approximately 7 to 13 floors suffered much more damage and
collapses than lower or very high buildings in the center of Mexico City indicates that resonance
between the ground motion and the fundamental vibration periods of these buildings (7 to 13
floars) was a mayor cause for destruction.

The following example calculation illustrates the resonant effects. Figure 4 shows the narrow side
of a typical office building with 10 floors. It is a concrete frame structure with a plan of 15 m by 50
m supported by 4 x 11 cast-in-place concrete piles of 0,90 m diameter and 30 m length. The piles
are assumed to be fixed in a fairly rigid pile cap. The fundamental period of the structure 1s 1.1 s
for the case of a totally fixed foundation. If the flexibility of the pile foundation is considered, the
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fundamental period of the structure increases to 1.9 s and is thus very close to the fundamental
period of the ground. The soil profile is almost the same as that of profile 1 in Fig. 1.

The flexibility of the pile foundation and its contribution to the fundamental period of the building
is mainly due to bending of the vertical piles when subjected to a horizontal base shear force of the
structure. The rocking stiffness of the pile foundation, even in the shorter direction, is relatively
large and therefore has only a small influence on the fundamental period of the building.

The pile foundation and the structure are excited by vertically propagating shear waves in the
profile. These waves are generated at the base of the profile (-500m) by horizontal acceleration,
which are consistens with vertically incident shear waves from below.

Figure 4 shows how the accelerations increase from the basé profile to the roof of the building.
There is already a marked increase of the motion from -500m to the top of the sand and gravel
deposits at -26m, it is roughly a factor of 2.6. From there to the free ground surface the motion
increases further by a factor of approximately 2.7. The stiffness of the piles reduce the motion
slightly if there is no building mass. Finally, the motion increases with the height of the building;
the factor between the pile cap and the roof is three.

In this analysis the structure was considered to respond linearly to the excitation, having 5% of
viscous damping. At this level of shaking the response of the structure would be in reality inelastic.
Thus the amplification of motion from the pile cap to the roof would be less than show in Fig. 4.

The difference of the free field ground surface motion and the motion of the pile cap without the
building depends generally on the bending stiffness of the pile, the pile spacing and the number of
piles. In this case, as in most cases, the difference is small, see Fig. 5.

In the present examples the dynamic analysis of the soil strata, the pile foundations, and the
structure is performed via the frequency domain. Transfer functions are computed using the
complex response method, and time histories are computed by Fast Fourier Transform Techniques
(FFT).

The interaction of the pile foundation with the soil is analyzed by a quite sophisticated method,
which is from the engineering mechanics point of view rather rigorous as long as the soil and the
piles stay in the linear response range. It considers the three-dimensional situation and takes
pile-soil-pile interaction into account. It is briefly outlined below.

METHOD OF ANALYSIS FOR PILE GROUPS
Displacements, shear forces and bending moments shall be computed for a group of piles which

are subjected to horizontal and vertical loads. The loads may be static or dynamic forces,
prescribed displacements or accelerations. Pile-soil-pile interaction is taken into account.
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The soil is horizontally layered; it extends laterally to infinity and is underlain by a rigid base or an
approximation of an elastic halfspace by viscous dampers at a finite depth. The soil is treated as a
linear elastic or visco-elastic medium using complex modules representation. Non-linear soil
behavior may be approximated by adjusting iteratively the module and damping values to
computed strain levels in each soil layer.

The piles consist of vertical beam elements with linear bending and shear behavior including
material damping. The location of the piles in plan is arbitrary. Symmetry properties may be
utilized to reduce the required storage and computational effort. The piles are pinned or fixed at
the pile cap which may be assumed rigid for simplicity in many cases.

Procedure.

Each pile is connected to the soil at several, say 10 to 20, nodes as indicated 1n Figs. 1 and 2 of the
Appendix. Displacements and rotations of the soil and the piles are matched at these nodes and
equilibrium is enforced. To this end, the soil and the piles are considered as substructures. First,
the displacement field caused by time harmonic ring loads in a layered visco-elastic medium is
computed as outlined in the appendix. Fig. 3 of the Appendix shows the displacements due to a
ring load p. cos in the radial direction. Corresponding figures for a tangential load p.sin and a
vertical load p.cos would look similar.

Second, the soil displacement caused by unit loads acting at each node, one at a time, are
evaluated for all the nodes where the piles and the soil are to be connected. This leads to the
frequency dependent flexibility matrix of the soil, [F].

When flexibility terms are computed that relate forces and displacements at one and the same pile,
ring loads with a resultant force or moment of unit value in the respective direction are applied
along the periphery of the pile at a nodal ring (node). Displacements and rotations are computed
similarly along the periphery of the pile. For the resultant nodal displacements it is assumed that
the circular cross section of a pile does not deform. When flexibility terms are computed that
relate displacements and forces at different piles, the ring loads are reduced to point loads and the
displacements are computed for the axis of a pile rather than for its periphery. Furthermore,
vertical displacements of the soil around one pile caused by forces acting at another pile are
disregarded for simplicity.

Next, the flexibility matrix of the piles, [F], is computed. Since the flexibility matrix of the soil does
not take the boreholes in the soil into account, one may deduct the mass and stiffness of the soil
within the pile cross-section from those of the actual pile.

Finally, the soil and the piles are connected at the common nodes. This leads to

([Fg) + [FL)) {P;) = [F) {P) (1)
[F,) (B} = (P,})) = (w) (2)
[F] (P} = (u) (3)
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Where {P ¢} = external loads, {P \} = internal forces between soil and piles, and {u} =
displacements of pile nodes. The matrices and vectors are complex valued, representing
amplifudes and phases of harmonic motion at given frequency. [F s] includes radiation and material
damping as well as inertia forces of the soil. [Fp] may include damping and inertia forces of the
piles and gile cap mass.

Instead of using the flexibility formulation one can invert the soil flexibility matrix and use a more
convenien! stiffness formulation for further analysis.

However, [F 5] may be a large matrix which is not sparse, even though the influence of nodal
rotations on other piles is neglected and the interaction effects of distant piles may be omitted in
some cases. [F s] for 20 piles with each 10 nodes has more than 400 times 400 complex elements.
Therefore an inversion would require a significant effort that can be avoided by the flexibility
formulation.

Handling of Symmetry

For simple and double symmetric pile arrangements the dimension of {P} and {u} in Egs. 1 to 3
can be reduced to half or a quarter respectively. In case of an axisymmetric pile arrangement, the
dimension of {P} and {u} may be reduced by a Fourier expansion in the tangential direction. If a
rigid pile cap is subjected to a horizontal force or excitation by vertical propagating shear waves of
an earthquake, the dimension of {P} and {u} can be reduced to two translational and two
rotational degrees of freedom per pile ring and nodal depth. This is equivalent to the degrees of
freedom or one pile per pile ring. Along each pile ring, forces and displacements vary elliptically at
constant depth. This holds strictly only of the spacing of piles within one ring is constant and if
each ring has the same number of piles. In practical cases of circular pile foundations the
assumption of an elliptic variation in the tangential direction is a fair approximation, which reduces
the numer: cal effort markedly.

Earthquake Excitation

Earthquakz excitation is included in the form of vertically propagating shear waves. They are
generated in the model by horizontal acceleration of the bottom boundary. First, the free field
motion, {up} of the soil layers (without the pile foundation) is computed. This is a simple
one-dimensional analysis. Then {uf} has to be subtracted on the righthand sides of Egs. 1 and 3. In
case of no external forces {Pe} this yields:

([Fg) + (Fp)) {P;) = - (up) (4)
- [Fpl (P} = (u} (5)
(F) (P;} = (u} - {up) (6)

Where {u} is the total displacement.
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INTERACTION OF SOIL AND PILES GROUPS

The analysis method outlined above is used to compute the static and dynamic stiffness of a single
pile and group of 44 piles (4 x 11) with a spacing of 5 m. The piles are of concrete (25 Mpa), they
have a length of 30 m and are fixed at the pile head.

The diameter of the piles is varied. Table 1 summarizes the values of the stiffness for horizontal
displacement and rotation of the rigid pile cap about the longer horizontal axis. The rocking
stiffness is targe and hardly affects the fundamental mode of a 10-floor building. The horizontal
stiffness of the single pile and the pile group increases only at a moderate rate with increasing pile
diameter. The static group factor is the stiffness ratio of a group and a single pile divided by the
number of piles in the group. It is below 0.4 in all cases.

Figure 6 shows the variation of the dynamic stiffness with frequency for a single and a pile group.
The stiffness of a single pile is almost constant in the frequency range shown. However, the
stiffness of the pile group changes; with increasing frequency, it first drops to about 50% of its
static value at the resonant frequency of the soil profile and then grows to values which are larger
than the stiffness of a single pile multiplied by the number of piles. The dynamic group factor is
larger than one. This is due to pile-soil-pile interaction. While at low frequencies the interaction of
piles in group reduces their stiffness, it increases their stiffness at higher frequencies.

Transfer functions for the horizontal motion of the pile foundation without building mass, as
caused by an incident wave at the base of the soil profile at -500m, (i.e. transfer function from
point 1 to 4 in Fig. 3) are shown in Fig. 7 for different pile diameters. The height of the peak at 0.5
Hz (the first resonant frequency of the profile) decreases as the stiffness of the piles increases.
However, this tendency is reversed at the second resonant frequency, at 1.1 Hz.

When mass is added to the pile foundation, the first resonant peak shifts to a lower frequency and
increases in height, see Fig. 8. For simplicity, the mass is assumed rigid (eg. a very stiff shear wall
building), and no rotation of the pile cap is considered.

Figures 7 and 8 suggest that a stiffer foundation (eg. larger piles) and a smaller building mass (eg.
by excavation for basements) tend to reduce the motion of the pile foundation at the fundamental
frequency of the soil profile, but may increase the response at higher frequencies.
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TABLE 1. Static stiffness of single pile and group of
4 x 11 piles, spacing 5 m, motion in direction of short

dimension

Diameter of piles

Horizontal stiffness
single pile, profile

group
group
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Rocking
group

profile

of 44, profile
factor

profile
factor

stiffness
of 44, profile

MNm/rad
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0.35
594
0.30

533000
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749
0.24
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53.5
103.2
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0.38
973
0.21
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APPENDIX
Ring and Point Loads in a Layered Medium

The displacements of harmonic motion in a layered elastic or viscoelastic medium at frequency w
may be represented in cylindrical coordinates, Fig. 3, using the following functions:

e'®?! for the variation in time

e'??  for the varation in the hoop direction,

the Bessel functions Jv (kr) or Hv (kr) for the variation in the radial direction, and continuous
piecewise linear functions in the z- direction. The functions in t, 6 and r satisfy the respective
ordinary differential equations, which are obtained by separation of variables from the equations
of motion in cylindrical coordinates. The functions in z are approximations which require a
subdivision of the natural soil layers into thin layers as dedicated in Fig. 3[3]. The number of layers
be n.

Enforcing compatibility of displacements and equilibrium at the interfaces of the n soil layers and
observing homogeneous boundary conditions (zero stresses at top and zero displacements at
bottom) yield two eigenva\ue problems [3] which can be solved easily. They depend on w but are
independent of v . The homogeneous solution for motion in the r-z plane consist of 2 n generally
complex wave numbers k; and the eigenvectors X, and Z, containing the horizontal and vertical
displacement components respectively. For motion in the r1-6 plane one obtains n wave numbers
k;- and the corresponding vectors Y,

The displacements u, v, w and the strains and stresses can now be expanded in terms of the
eigensolutions. In order to compute the displacements caused by ring loads at distance R from the
center line, see Fig. 3, one may consider a cylindrical surface at radius R. When computing
displacements and stresses, one has to use the Bessel functions Ju for r < R due to the reflection
at r = {0, and the Hankel function Hv @ for r >R, because amplitudes must decay with distance
from R[5]. At the cylindrical surface r = R, internal stresses and external loads must be in
equilibrium and displacements must be compatible. Enforcement yields the following results:

The displacements at a point (r, z = 1, §) caused by a line load at the nodal ring (R, z=h), see
Fig. 3, are.

20 T -i iwe
a. +I —H. Y,.c.l* —-cos V8 " e (1
j=1 r 3 "l 7] 4

cos v8 + et (3)




with

(2) ' d
H. = H . .= e
; v (kJr) HJ dr HJ.
q (2) - = 4 - (4)
H . = H . . = =
j v (kJr) HJ dr Hj
For a ring load in r-direction Pr = cos v6/2 R
! - v
a. = J,. , = . —
P70 Ry €5 =95 Yhy R (%)

For aring load in 6 direction P8 = -sin v6/2IIR
a.=J.Xh.-Y- c. =J. Y. . (6)
J J7hj R i j hj

For a ring load in z-direction Pz = cos v6/2IIR

. =k, J. ] . =0 &)
3 = k5 Iy Iy c

Egs. 1to 7 are valid for r2 R for r< R Hankel and Bessel functions must be interchanged. The
abbreviations with J correspond to those in Eq. 4. Normalization of X, Y;and Z; is understood
as in [3] but with a subsequent division by k; or k), respectively.

For v = o the displacement-- is not coupled with u and w If in this case the sinus-function in
Eq.2 isreplaced by 1,v will represent pure torsional motion.

When the radius R of the ring load goes to zero one obtains the displacements caused by a point
load. For a horizontal point load Px = 1 in the x-direction (#=0) is one and

a. = k. . . = k. Y .
R T Tt S TRl Y (8)
For a vertical point load Pz =1,v is zero and .
4. = k., . . =
j ; Z’h] 5= o (9)
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