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ABSTRACT

The seismic bearing capacity of shallow spread foundations is determined within the framework
of the yield design theory. The supporting medium obeys Tresca’s isotropic strength criterion
with a cohesion C and with or without resistance to traction. The load vector is composed of
four independent components N (vertical force), T (horizontal force), M (moment), fx (inertia
forces in the soil).

At first, the static extreme loads for the foundation-soil system are determined from the static and
the kinematic approaches of the yield design theory. New kinematic mechanisms are proposed,
which are used for the evaluation of the seismic bearing capacity. For the computation of the
latter, the foundation-soil system is then assumed to behave as an elastic perfectly plastic system.
The dynamic bearing capacity is determined in terms of allowable residual displacements for the
foundation. Charts are presented in terms of dimensionless parameters for the static and seismic
bearing capacities of foundations.

INTRODUCTION

Little attention has been paid to-date to the ultimate bearing capacity of foundations under
seismic excitation. The main justification is that bearing capacity failures are not very often
observed during earthquakes, provided that liquefaction of the soil foundation does not occur.
However, in seldom cases, such as in Mexico city during the 1985 Michoacdn earthquake,
failures did occur with dramatic consequences for the supported superstructures.

The state of practice in evaluating the bearing capacity of foundations during earthquakes consists
in applying conventional bearing capacity formulae with reduction coefficients accounting for the
load excentricity and inclination arising from the inertial forces developing in the super-structure.
In such an approach, fundamental aspects are ignored [3]: inertial forces developed in the soil by
the passage of the seismic waves are not included in the analyses: earthquake loads are treated as
permanent loads, either in space or in time, although a temporarily overload on the foundation
does not mean failure but rather permanent displacements.
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It is the purpose of this paper to present the general framework for analyzing the dynamic and
seismic bearing capacity of strip shallow foundations resting on a homogeneous clay layer whose
strength criterion obeys Tresca criterion ( ¢=0 concept) with or without resistance to traction.
Solutions are derived on the basis of the yield design theory ([5], [6]), mainly its kinematic
approach.

First, new results obtained for the bearing capacity under excentric and inclined static loads are
briefly summarized; these results are extended to include the effect of the inertial forces in the
soils; finally, the permanent displacements of the foundation are evaluated to define "failure®.

DEFINITION OF THE PROBLEM AND METHOD OF ANALYSIS
Generalities

An infitite rigid foundation of width B lies on the surface of a homogeneous halfspace. The
foundation is subjected to three independent external forces defining the load vector Q: the axial
force N, the tangential force T and the overturning moment M (fig.1). This load vector
represents the external forces transmitted from the super-structure onto the foundation, for
instance, the inertial forces developing during an earthquake. The problem to be solved is the
determination of all possible combinations of N, T and M which the foundation can withstand.

The solution is searched for in the framework of the yield design theory ({5}, [6]). The supporting
halfspace is modelled as a three-dimensional continuum characterized only by its strength
criterion which defines local yielding.

h b4

FIGURE 1. Geometry of the system
For the present study, the material is assumed to obey Tresca strength criterion with or without

resistance to traction. The domains G(x) of the corresponding allowable stress states are
represented in the principal stress space on fig.2.
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FIGURE 2. Strength criteria ([5])
Their equations are given by

- Material with resistance to traction:

f(g(x))= Su {o-0-2C}
Lj=1,2,3

- Material without resistance to traction:

f(a()) = Suw {0-0-2Co;)
1,j=1,2,3

where Cis the undrained shear strength (cohesion) of the soil.
The domain G(x) of allowable stress tensors  (x) is defined by:
f( g (x))=0
where xstands for the coordinate vector; tensile stresses are counted positive.

The interface between the foundation and the soil is perfectly rough without resistance to
traction.
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Although the soil is a heavy material, it is proved that the effect of the vertical body forces in the
soil (gravity) can be disregarded in the analysis. If g is the stress tensor solution of the
problem for the weightless soil, the stress tensor  solution of the problem for the heavy soil is
given by:

»

g =

na

y
where fy stands for the gravity force per unit volume counted positive upwards”

The indefinite equilibrium equations and boundary conditions are satisfied byg'and the
strength criterion is not affected by the change of variables defined by eq.4. The same result is
valid for any constant vertical body force; it therefore applies also to vertical earthquake forces
which need not be considered in the analysis.

Method of analysis

The presentation, based on the more general one given in [5] and [6], will be restricted to the
main results relevant to the present study.

Let us define the geometry of the soil-foundation system as () with boundary S. Let g be a
stress field at point x, U a velocity field with the associated strain rate field d; letfl) ldenote the
jump of U when crossing a velocity discontinuity surface at point x followiﬁg the normal n(x).
The load vector is given as Q and q is the kinematic vector associated with Q when expressing the
work of external forces in a kinematically admissible velocity field U. 1 N/cB

AN

FIGURE 3. 3D representation of K / M/’

The domain K of the potentially stable loads (fig. 3) will be approximated from the outside
using the kinematic approach of the yield design theory, derived from the principle of virtual works
which states:

v

. for any statically admissible stress field g in equilibrium with Q,

. for any kinematically admissible velocity field U,
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[QQ(ZC) 1d (x) dQ +/z| U(x)]-2(x).42=Q(9)- 9
where . and : represent simple or double contraction on tensors.
Introducing the x (.) functions with the following definitions:
z(x;d (x))=Sup {2 (x):4(X) lg (X)EG (x) }
x (x;n (x) [UEI=Sup{ [Ux)]-2 (x)-0(xX) | gX)G X))

for any virtual velocity field U the maximum resisting work is expressed by:
PU)=| s 4 () aatfr@in(x) [UGOD) 4z
Q p2

which yields to the statement that for any potentially safe load Q - K and for any kinematically
velocity field U and associated q (U)

Q-q(U) =P (O

The method therefore consists in constructing kinematically admissible velocity fields and in
minimizing P(U) to obtain the better approximation to K (fig.4).

Q,

q(U) %

Qa0 P(W)=0]
(N .

\ ) [ 1
17

FIGURE 4. Kinematic approach "from outside" [6]

Application of the kinematic approach requires the knowledge of the x (.) functions and the
construction of kinematic mechanisms. The latter are presented in the following paragraph.
The = (.)functions are calculated in [5] and recalled hereafter:

- Material with resistance to traction:

n(d) = + » if tr(d) # 0

in the volume 0 ;

n(d) = C [ ld1| + ldzl + |d3| ] iIf tr(d) =0
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. along the surfaces X of velocity discontinuities:

nn; (U]

+@ if fU}] . n=0

mn; fup=cifull if [u] . .n=0
- Material without resistance to traction:

. in the volume Q

n(d) = + @ if tr(d) < O
n(d) =¢C [ [, + l4,] + {d,] - tr(g)] if tr(d) =z 0

. along the surfaces X of velocity discontinuities:

n(n_;[gl)=+m if [y_].g < 0

v fuD=c[i[ull-[yl- o] v [u]-nz=o0
- for the soil-foundation interface in both cases:

n(fu)=+w if [U].n<oO

n(fup =cifu]-qu)-nmnf it fU]j.n=0

SUMMARIES OF SIGNIFICANT NEW RESULTS FOR THE STATIC CASE

Aside from the seismic aspect of the problem, it appeared necessary in the course of the study to
develop new solutions for the static, excentrically, inclined load. As mentioned previously,
attention was focused on the kinematic approach; however, the static approach was also used to
assess the validity of the solutions. Since the static problem is out of the scope of the present
paper, only the final results will be recalled. All the details of the derivation can be found in [4].

Among the tested kinematic mechanisms, the most significant ones for the dynamic analyses are
presented in more details hereafter. These two mechanisms yield the better approximation of
K for a positive (downward) normal force and positive horizontal force and moment (fig.1); this
combination of forces corresponds to the case of a foundation initially loaded by a vertical
centered force and subjected to an increasing horizontal force applied at an elevation H above its
base.

Both mechanisms are basically identical; they only differ by the position of the center of
instantaneous rotation Q (fig.5).
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FIGURE S. Kinematic mechanisms
Mechanism A in fig.5 is associated to: /B/

- a rotation, with angular velocity w, of the system composed of the foundation A’A and of
the soil volume 1JA; the center of rotation is Q,

- an uplift of the foundation along A'l,
- a purely tangential velocity field in the circular sector AJK and in the triangle ALK.

Mechanism B presents a center of rotation whose projection on the surface of the halfspace lies
outside the foundation A’A. It differs from mechanism A since there is no longer & contribution
from the uplifted zone to the value of the maximum resisting work (eq.14).

These mechanisms depend on three independent parameters which are defined in fig. 5: ¢, 4 and 4
= ( + b)/B for mechanism A; a, §and u for mechanism B. The maximum resisting work is a
function of these three parameters; for instance, for mechanism A, its analytical expression for
a material with resistance to traction is given by:

n

2 .2 1 n 1
P(U) = w C B” A [-—--,u+—tanp+(——-a) —————-]
2 2 2 cos® «

+wCB A (1-2) tan «

Because of space limitations, the expressions for mechanism B or for a material without resistance
to traction cannot be reproduced. They are found in [4].
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The external work in the rotational movement is given by:
Q.q(U)=wl[EN+T(+Db)tan al

Inserting eqs. 15and 16 in eq.9 yields the following upperbound for T,

T H N
T Sty e Ty B!

where the ri stand for independent expressions in the parameters of the considered
mechanisms.

The function ¢ (.) has then to be minimized on the parameters rj(i=1,2,3).

The choice of the form of eq. 17 results from the fact that for the seismic analyses, the vertical
Force N and the elevation H of the horizontal force can be considered as approximately
constant.

The results of the minimizations given by eq.17 for both mechanisms, and for others not
reproduced herein, are summarized on fig.6 for a material with resistance to traction and on fig.7
for a material without resistance to traction. These figures depict the projection onto the (N, T)
plane of the domain K (fig.3); the curves are graduated as functions of the load excentricity
e/B.

The following conclusions were drawn from these results in [4]. For a material with
resistance to traction and a  zero excentricity, the static and kinematic approaches yield
coincident solutions for 2 zero load inclination and for an inclination greater than 7°; between
zero and 7°, they differ by only a few percent. When the load excentricity increases, the
difference between both approaches increases; however, from a practical standpoint, where
the normal load is equal to 5.14 C.B/FS with FS being the safety factor (FS 3) and the
excentricty remains moderate (e/B  0.25), the difference is small and justifies the use of the
kinematic mechanisms in the following. It has also been shown that the usual rule for excentric
loads which consists in substituting the foundation width B by a reduced width B:

B-=[1-z—|EL)B

B
is erroneous and overconservative: the point (N/CB=0, T/CB= 1) always belongs to the domain
K whichever the excentricity.
For a material without resistance to traction, the same conclusions on the validity of the solutions

still apply. However, the use of he concept of reduced width (eq.18) overestimates the actual
bearing capacity.
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FIGURE 6. Approximation of the domain K from outside
Material with resistance to traction
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SEISMIC BEARING CAPACITY

In this paragraph, the effect of the inertia forces developed in the soil by the passage of the seismic
waves are incorporated in the analysis to define a new domain K for the potentially stable loads.

Definition of the seismic excitation

As mentioned previously, only the horizontal seismic force will be considered, since the vertical
one does not enter in the definition of K. We will use the common assumption in earthquake
engineering which considers the horizontal motion caused by the vertical propagation of
horizontally polarized shear waves. Under these conditions and provided the soil deposit
presents only vertical heterogeneities, the seismic force depends solely on the vertical coordinate.
We will further consider this force constant, which is approximately valid over some depth; if h
is the thickness of the clay deposit overlying the bedrock, it can be shown ([4]) that this hypothesis
is valid for depths of the order of h/10.

We will note the amplitude of the constant horizontal seismic force as f x in the following;
fx ex represents the associated vector where e x is the unit vector of the x axis.

Evaluatian of the seismic bearing capacity

The two kinematic mechanisms presented on fig.5 are used for this evaluation. The maximum
resisting work P(U) developed in the velocity field U is the same as for the static case.

However, the work of the inertia forces in the soil must be included in the derivation of the work
of the external loads. Equation (16) is modified accordingly:

Q-4 W =wlN+T@+b) tanal + [[ £ e . Uaxay
D

where  represents the domain IJKLAI (mechanism A) or A'TKLAA’ (mechanismbB).

Noting that
fx e = fx grad x
and that

div (x . U) =xdivU + U . grad x = U . grad x

because div U = 0 for the kinematic mechanism, it comes from the divergence theorem in the
case of mechanism A:

fjﬂfxgx.gdxdy=§ xf g.p_ds=J.fodx
1JKLAT n X7



since, aside from the segment IL, the velocity field U verifiess U.n=0. (Similar expressions are
evidently obtained for mechanism B).

The incorporation of the work of the inertia forces in the work of the external forces therefore
amounts to the evaluation of the simple integral IL ineq 22

Assuming that the vertical force is approximately constant during the seismic excitation, the
upperbound for the horizontal force, ie. the inertia force developed in the super-structure and
applied at the elevation H of the center of gravity is given by:

N H fxB

T B ¢

T
=5 = ¢ (rl. r. T

CB )

The functions ¢ have the following expressions for the soil with resistance to traction:

- mechanism A
2 T 1 4 1 1 N
= cos” «
¢ = H
B + A tg «
__ff' [ (1 + 2 sina)(1 - sina)® . 1]
f B 6 3
_ x CoS U CcOS &

¢ —g— + A tg «a

- mechanism B

2 2 2
sin
: B [[1: Sy ; tg “][1 _ sin a] . B sin® a« a]

¢ sin” (B-a) sin® B sin® B
H , _tgatgg
B tg B - tg «
1+2tga _sina 2 sin «
tg B, sin 8 “sin B
f B 1 - tg « tg «
} x tg 8 [1~th] cos a cos M
c - H _tgatgpB
B tg B - tg «
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Equations 24 and 25 have to be minimized under the following constraints:

OSaS%- ,0=p<—'—zt- ,OSAsloraSﬁ"slzt—

For the soil without resistance to traction, the expressions for P(U) are given in [4] and the work
of the external forces, including the inertia forces in the soil, are identical to that derived above.
The analytical expressions for ¢ can be straightforwardly obtained.

Results of the minimizations of ¢ are presented in figs.8 to 13 which describe for a given normal
force, the variation of the upperbound of the horizontal force as a function of its elevation H
and of the seismic horizontal force fx in the soil.

Comments on the results

The figures 8 to 13 show that there exists a maximum value for the seismic force beyond which
no equilibrium can be reached. This limiting force is obtained upon minimizing eq. 9 with
N=T=0 and is equal to:
f B
X

c— =2

This limit results from the fact that the seismic force has been taken constant with depth. It
corresponds to a maximum value of fx; however, as soon as the normal force becomes high, the
combination of the permanent load (N) and of the seismic force (fx) precludes a state of
equilibrium, even under small fx values. This has a physical sense since a high normal force
means that the foundation soil system is close to a limit equilibrium; any further perturbation
brings it on the surface of the domain K of the potentially stable loads. It must be noted that for
practical problems the limit given by eq.26 is not constraining.

Figures 8 to 13 clearly show that the influence of the seismic force is almost negligible for small
values of the normal force, as those encountered in practice for well-designed foundations (safety
factor greater or equal to 3). The seismic force has a paramount importance for high values of
the normal force and decreases dramatically the bearing capacity.

These results may be an explanation to the few observed bearing capacity failures during
earthquakes. Referring to the state of practice in the evaluation of the bearing capacity, which
does not include the effect of the soil inertia forces, the error on the ultimate load is negligible
for well-designed foundations and very important for others. It is therefore most likely that these
failures affected the foundations presenting a low safety factor with respect to dead loads.

DYNAMIC ASPECTS

The soil foundation system is assumed to behave as an elastic perfectly plastic system with
respect to the load parameters N, T, M, fx. The boundary of the domain K, previously determined,
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is adopted as the boundary for the apparition of plastic deformations. The plastic behavior of the
system is defined by the kinematic mechanisms associated with the extreme loads and therefore
obeys the normality rule with respect to the kinematic variables associated to the load
parameters.

Noting K(U) the kinetic energy of the system, Pe (U) and P; (U), the work of the external and
internal forces

_d
Pe(l_J_) + Pl(u) = ?E- K(Q)

with
K(U) = -—é— JI P u? dx dy
D
which can be shown to take the form [4]

K=-é—psz‘k

where k depends only on the parameters r defining the kinematic mechanism.

The work of the external forces during the plastic movement of the foundation is, in view of
eq.9, given by eq. 19 where T is replaced by T* the extreme load.

From eqgs. 19, 27 and 29, the angular velocity of the foundation around point Q (fig.5) is

computed as:
w(t) = JE—EEE—E- T I [ T f‘) - 1] dt
p B x T

with A = (£ + b)/Band T (1)) =
Integrating €q.30 between t0 and t1 (such as w(t1) = 0), yields the maximum permanent rotation
of the foundation. The maximum displacement of the foundation is equal to the product of two
terms:

- one related to the geometry of the kinematic mechanism,

- one related to the time history of the applied load T(s), i.e. the inertia forces developed in the
super-structure.

Under the assumptions spelled at the beginning of the paragraph, the method permits a rigorous

definition of "failure” in terms of unacceptable permanent displacements. It is asically similar to
the one developed by Newmark for the seismic stability of dams [2].
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A program working on a microcomputer has been developed in the course of the study to perform
all the calculations presented throughout paragraphs 3 to 4. A very efficient algorithm for the
minimization 1} yields the results in a few seconds on an AT286.
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