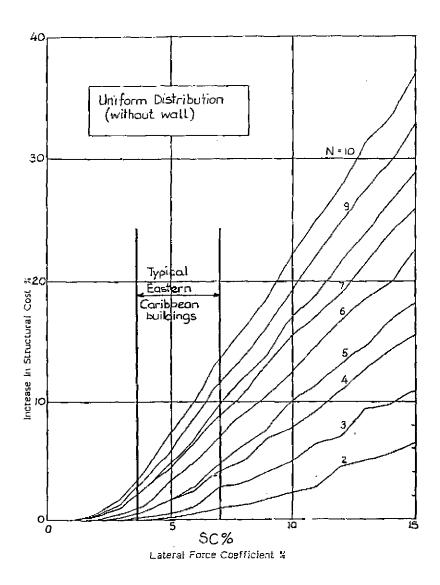
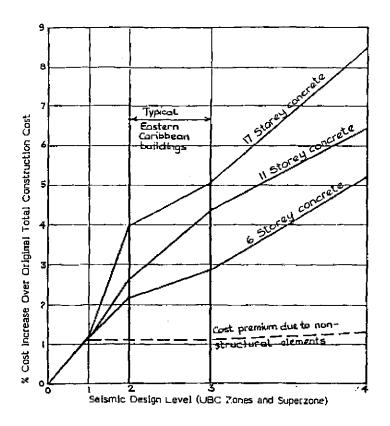
'It is unwise to pay too much, but worse to pay too little; when you pay too much, you lose a little money, that is all.


When you pay too little, you sometimes lose everything, because the thing you bought was incapable of doing the things it was bought to do.

The common law of business balance prohibits paying a little and getting a lot. It can't be done. If you deal with the lowest bidder, it is as well to add something for the risk you run.


And if you do that, you will have enough to pay for something better.

There is hardly anything in the world that someone can't make a little worse and sell a little cheaper — and people who consider price alone are this man's lawful prey'.

John Ruskin 1819-1900 (plus ça change ...).

Cost Impant of Zerthquake-Resistant Design (Ipek) Figure 4

Effect on Cost of a Seismic Design of Typical Concrete Apartment Buildings (after Whitman et al)
Figure 5

Р			REASE * IN	CONST							
	DWELLING BY MODEL DESIGNATION										
SEISMIC OR WIND LOADING	'A'	'A' 1.5 x O. T.	'A-1' Sliding door	'A-1' Window	† <u>G</u> †	¹B~1 '	'C'	'C-1'	'C-2'	£	F
Zone 3	0.3		0.37	0.37	0.42	0.45	0.81	0.74 0.58	0.74 0.58	0.48	1.4
Zone 2	0.28	-	0.36	0.36 0.28	0.29	0.29	0.31	0,28	0.27	0.48	0.24
15 psf wind	0,31	0.57	0.41	0.39	0.44	0.61	0.98	0.90	0.95	0.48	0.24
25 psf wind	0.59	1.1	0.60	0.59	0.92	1.0				0,48	0.71
40 psf wind	2.00 1.57	2.2	1.6	1.4	2.2	1.9	_			1.3	1.9

^{*} Estimated upper and lower bounds given;
**Design recommendations as given in the report titled "A Methodology for Seismic Design and Construction of Single-Family Dwellings".

COST IMPACT AHALYSIS

For The Construction Recommendations in The Report Titled

"A METHODOLOGY FOR SEISMIC DESIGN AND CONSTRUCTION OF SINGLE FAMILY DWELLINGS"

JANUARY 1977

by

Ralph W. Goers & Associates Structural Engineers

for

Applied Technology Council

U.S. DEPARTMENT OF MOUSING AMO URBAN DEVELOPMENT

OFFICE OF POLICY DEVELOPMENT AND RESEARCH

Division of Energy, Building Technology and Standards

Department of Housing and Urban Development Contract H-2418 September 1977

Severud-Gruzen-Turner New York, New York 10017

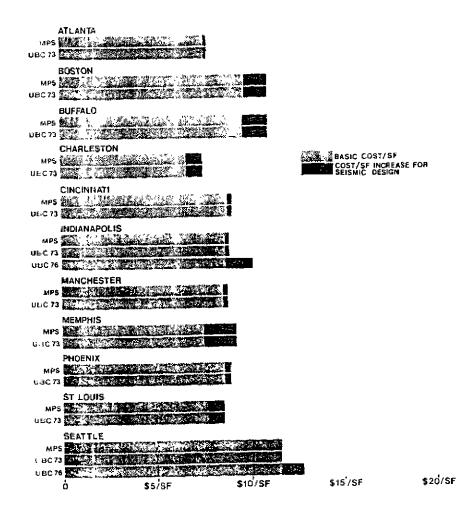
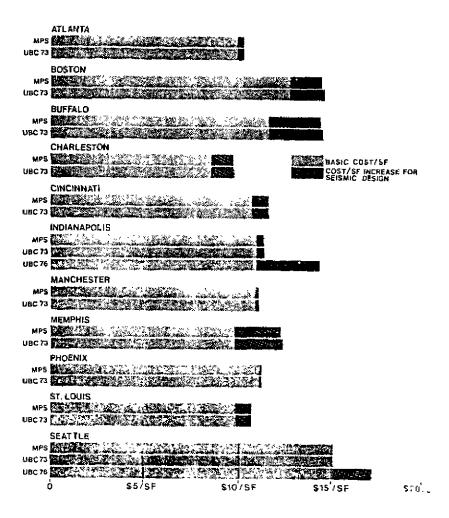

The research and studies forming the basis for this report were conducted pursuant to a contract with the Department of Housing and Urban Development (HUD). The statements and conclusions contained herein are those of the contractor and do not necessarily reflect the views of the U.S. Government in general or HUD in particular. Neither the United States nor HUD makes any warranty, expressed or implied, or assumes responsibility for the accuracy or completeness of the information herein.

Figure 3.2


Percentage Increase Over Basic Cost

		Local	Local	Locai
		to	to	to
		MPS	UBC 73	UBC 76
ATLANTA GA	BRICK MASCHRY	3 0%	3.03	
	CONCRETE HASONRY	2.2%	2.21	
	REINFORCED CONCRETE	3.8%	3.82	
	STRUCTURAL STEEL	4.7%	4.73	
BOSTON MA	BRICK MASONRY	13.1%	13.5%	
	CONCRETE MASONRY	12.43	12.42	
	REIMFORCED CONCRETE	14.4%	14.43	
	STRUCTURAL STEEL	3.12	4.21	
BUFFALO NY	BRICK MASONAT	23.9\$	24.33	
	CONGRETE MASONRY	13.5%	13.5%	
	REINFORCED CONCRETE	16.44	16.48	
	STRUCTURAL STEEL	8.2%	5.31	
CHARLESTON SC	BRICK MASCHRY	14.13	14.51	
	CONCRETE MASOHRY	12 9%	12 91	
	REINFORCED CONCRETE	8 41	B 42	
	STRUCTURAL STEEL	8 ot	5 8\$	
CINCINNATI OH	BRICK MASONRY	8.93	1.01	
	CONCRETE MASONRY	2.64	2.61	
	REINFORCED CGHCRETE	2,6%	2,81	
	STRUCTURAL STEEL	4.68	4.61	
INDIANAPOLIS	BRICK MASONRY	2.91	2 52	31.21
	CONCRETE MASONRY	2.21	2.23	14.91
	REDAFORCED CONCRETE	3 51	3.51	21.54
	STRUCTURAL STEEL	4.92	6.8 t	9.54
MANCHESTER NH	BRICK HASOHRY	1.24	1.32	
	CONCRETE MASONRY	3.04	3.04	
	REIMFORCED CONCRETE	2.74	1.75	
	STRUCTURAL STEEL	1.01	1.6%	
MEMPHLS TN	BRICK MASCHAY	25.0%	25.31	
	CONCRETE MASONRY	22.04	22.03	
	REINFORGED CONCRETE	25 5%	25 - 51	
	STRUCTURAL STEEL	10.6 t	16.8 t	
PHOEMIX AZ	BRICK MASONAY	1.12	1.2%	
	CONCRETE MASONRY	2.83	2.8%	
	REINFORCED CONCRETE	2 63	2.61	
	STRUCTURAL STEEL	1,14	2.03	
ST. LOUIS NO	BRICK MASONRY CONCRETE MASONRY	9.4 \$ 10.1 \$	9 52 10.12	
	REINFORCED CONCRETE	10.12	10.12	
	STRUCTURAL STEEL	6,42	7.32	
SCATTLE WA	BRICK MASONRY	.ot	02	13.82
	CONCRETE MASONRY	.03	.01	9.83
	REIHFORCED CONCRETE	.0\$.01	6.74

Cost Impact-Brick Masonry

Cost Impact-Concrete Masonry

Cost Impact - Reinforced Concrete

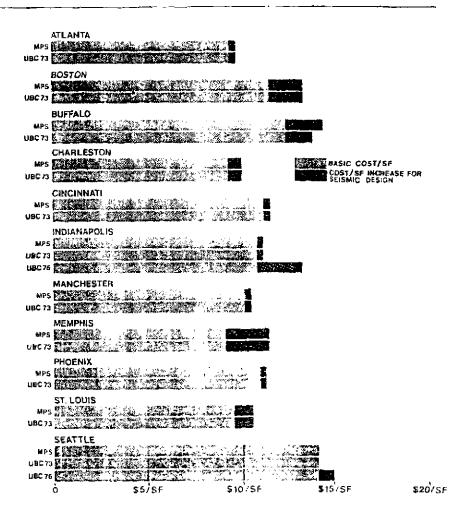
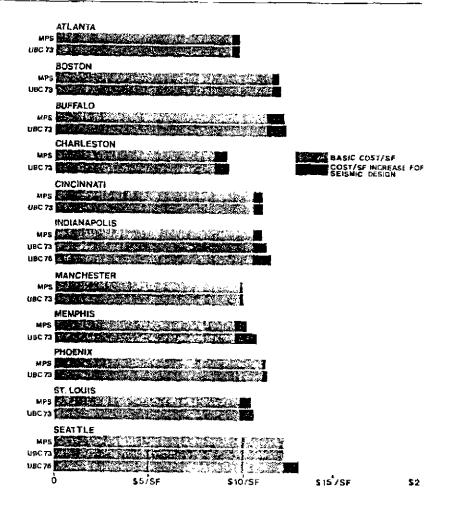



Figure 3.6

Cost Impact-Steel

$\underline{\mathsf{Services}}$ (cont'd)

<u>Item</u>	Qty	Rate(\$)	Cost(\$)
6. Connecting 23 internal lines		20.00	460
Total Cost:	_		148 760

D. <u>Summary of Costs</u>

llaterials .	130	574.00
l.abour	54	823.00
Repairs to Water Tank	5	000.00
Power Lines	30	000.00
Telephone System	<u>]13</u>	760.00
	334	157.00
Engineering Supervision	_33	400.00
	367	557.00
+ 15% Contingencies	_55	000.00
	422	557.00

ay \$423 000 00

3.10 Phasing

It is suggested that the work be phased over 3 years as follows:

Immediate - (Funds available)

<u>Item</u>	Cost(5)
Improvement of services - water, power and telephone	38 000
Year 1	
Replacement of roof sheets, and improvement of roof fixings	95 297
Year 2	
Storm shufters and protec- tive measures	90 100
Year 3	
Placing telephone cables underground	110 760
	334 157

NOTE: The costs given above do not include for engineering supervision or for contingencies.

3.11 Financing of the Project

The expenditure of \$38 000 estimated as the cost of urgent works can be met from USAID funds available. However, the financial Secretary has indicated that the Government of Dominica would be unable to provide the funds needed to support the program. The Government however is approaching international donors for funds for the reconstruction of damaged public buildings and facilities and it is hoped that such funds would be available to carry out the work proposed.

Nurricane Damage Potential Assessment			CEP/20029	17-Ju1-93				
ISN/Facility	Location Sub-total (000)	Replacement cost (880)	8ecba HC3 structur#	HC3	HÇ4	HC4	ctvil works #C5 structure	only HC5 cuvelupe
PARK sub-station ing and dence	200,000	200,000	۵	8,000	0	8,000	o	A, 00Ò
w sub-station ing and fende	100,000	faa*000	0	4,000	0	4,000	o	4,000
OHAS sub-station lng structure structure	1,100,000	900,000 100,000 100,000	a 0 0	18,000 8,000 8,000	9,000 9,000 0	18,000 10,000 10,000	27,000	18,000 10,000 10,000
Es telegom (SL&P fixings only)	100,000	100,000	40,000		80,000		100,000	
US Residences	2,500,000	2,500,000	37,500	175,000	75,000	437,500	112,500	612,500
s	\$4,600,000	54,600,000	572,000	1,896,500	2,401,500	5,275,500	3,807,000 1	0,441,500
			HC1 total=	2,468,500	HC4 totale	7,677.000	RCS total=1	4,249,500
			Percentage	5		14		25

	Building/			
	Facility		Structure	Non-structure
i	L-Block		\$ 60,000	\$ 39,000
2.	Baron Wing		\$ 30,000	\$ 16,000
3.	Paediatrics	-	\$ 12,000	\$ 20,000
4.	Chest Wing		\$ 40,00C	\$ 20,000
5.	Former Doctor's		•	•
	Residence		\$ 3,000	5 4,000
6.	Former Nurses		•	·
	Quarters		\$ 80,000	\$ 20,000
7.	Boiler House	*	\$ 1,000	\$ 2,000
8.	Generator Bidg	#	\$ 1,000	\$ 1,000
9.	Administration		\$ 30,000	\$ 30,000
10.	Laboratory		\$ 15,000	\$ 15,000
11.	Kitchen		\$ 20,000	\$ 3,000
12.	Water Tank		\$ 1,000	\$ 3,000
13.	Standby Generator		-	NA
14.	Boilers		-	NA
15.	Utility Lines		-	\$100,000
16.	Dramage		\$ 30,000	-
17.	Telecommunications		•	\$140,000
	Sub-Totals		\$323,000	\$413,000
	Overall Total			EC\$736,000

NA = Estimate not available

Table 2

Cost Variables for Existing Facilities

- Deterioration—of the structure, foundation, equipment, etc.
- Alterations—which have reduced safety or will incumber efforts to retrofit and renovate; lack of flexibility.
- Inadequate Codes in force when the station was built which make the structure and basic components too expensive to retrofit for earthquake safety.
- Inherently High Cost to Retrofit based upon the type of construction and building system, their age, and the practicality of making improvements.
- Climate characteristic local weather conditions influence construction needs, which in turn affect seismic safety approaches and those costs.
- Down Time for Buildings retrofit activity may force building closure for a period of time. Costs for relocation of employees and services will add to the overall cost of modifications.
- Other Hazards needs to increase the resistance of existing buildings to hazards other than earthquakes may significantly increase costs and reduce the practicality of retrofit for earthquakes alone: