
APENDICES

APENDICE 1

GUIA DE INSPECCION PARA EL PROGRAMA DE REDUCCION DE VULNERABILIDAD HOSPITALARIA ELABORADO POR LA ORGANIZACION PANAMERICANA DE LA SALUD (OPS)

PROGRAMA DE REDUCCION DE VULNERABILIDAD HOSPITALARIA INFORMACION Y DESCRIPCION

1.- IDENTIFICACION

1.1	Nombre:
1.2	Ciudad o localidad:
1.3	Dirección:
1.4	Municipio y Estado:
1.5	Teléfonos (y fax):
1.6	Año de construcción:
1.7	Información sobre el proyecto original: estructuras
	instalaciones, equipamiento.
1.8	Director o responsable:

1.9 Personas entrevistadas y fecha:

2.- DESCRIPCION

- 2.1 Descripción general de la edificación, número de plantas, edificaciones anexas y ubicación (ver 4).
- 2.2 Area construida (ver 5).
- 2.3 Area no construida: patios, espacios libres, zonas eventuales de seguridad.
- 2.4 Area de hospitalización. Ubicación y total de camas. Extensión aproximada en m^2 .
- 2.5 Area de urgencias. Idem anterior.
- 2.6 Area de cirufía, quirófanos. Idem anterior.
- 2.7 Rayos X. Ubicación. Precausiones.
- 2.8 Laboratorios y terapia.
- 2.9 Otras áreas: sala de partos, morgue, puestos de vacunación.
- 2.10 Consulta externa.
- 2.11 Cocina y comedor.
- 2.12 Distribución aproximada en croquis ad-hoc. Indicar áreas críticas (almacenamiento de productos tóxicos, radiactivos, materiales combustibles).

- 2.13 Administración, biblioteca de historias clínicas (archivo).
- 2.14 Población en horas nocturnas, diurnas y en horas de visita.
- 2.15 Personal médico, paramédico, enfermería, visitantes, paciente. Número de personas (tal vez se pueda distinguir como personal fijo vs flotante).

3.- ESQUEMA ORGANIZATIVO

- 3.1 Organigrama simplificado. Líneas de mando.
- 3.2 Personal directo, médico, administrativo y de mantenimiento.
- 3.3. Planes de emergencia y/o de contingencia. Frecuencia de simulacros.
- 3.4 Organización en caso de emergencia.
- 3.5 Puestos claves en caso de emergencia.
- 3.6 Existe comté para casos de Defensa Civil.

4.- SITIO, RIESGOS LOCALES Y FUNDACIONES

- 4.1 Plano (1:10.000 ó similar).
- 4.2 Esquema del sitio de ubicación.
- 4.3 Vías de acceso. Facilidades de comunicación.
- 4.4 Servicios cercanos. Aguas servidas. Aeropuerto cercano.
- 4.5 peligrosidad sísmica. Fallas geológicas. Taludes cercano. Irregularidades topográficas. Tsunamies. Represamiento de ríos, licuefacción, rotura de tuberías.
- 4.6 Otros Riesgos Geológicos.
- 4.7 Inundaciones. Río cercano. Crecientes históricas.
- 4.8 Huracán.
- 4.9 Volcanismo. Ceniza, torrentes de lava, lahar.
- 4.10 Tipo dominante de terreno en el área: roca firme, aluviones. Informes de suelos.
- 4.11 Información sobre tipo de fundaciones. Obras cercanas.
- 4.12 Filtraciones cercanas. Lagunas o afloramientos de humedad. Asentamientos visibles.

- 4.13 Riesgos tecnológicos. Edificaciones o fabricas cercanas. Incendios y dirección dominante del viento.
- 4.14 Represas cercanas. Riesgo de falla.
- 4.15 Informes técnicos sobre riesgos locales.

5.- ESTRUCTURA DE LA EDIFICACION

- 5.1 Número de plantas; área total; croquis de plantas y alzado.
- 5.2 Estructura principal. Tipo (I, II, III, IV; dual).

 Materiales de la estructura portante.
- 5.3 Detalles de uniones.
- 5.4 Configuración y forma de la edificación. Continuidad vertical. Distribución de masa; tanques de agua elevados. Irregularidades en planta. Planta baja libre. Columnas cortas. Diagramas rígidos. Remetimientos (%).
- 5.5 Fachadas. Porcentajes de aberturas. Material. Elementos prefabricados. Vidriería. Fachadas ciegas.
- 5.6 Tabiquería interior. Genera irregularidades. Tipo de material y espesor. Tabiquería liviana. Piso-techo; media altura.
- 5.7 Pisos: baldosa, concreto, granito. Carga unitaria estimada.
- 5.8 Techo o cubierta. Plano, inclinado, aleros. Doble vertiente. Material: losa de concreto, cubierta metálica liviana. Riesgos asociados (pretiles parapetos).
- 5.9 Estado general. Daños visibles, mantenimiento.

 Corrosión.

6.- CRITERIOS DE DISEÑO, CALIDAD

- 6.1 Información sobre el proyecto. Normas empleadas.
- 6.2 Que códigos fueron aplicados o respetados de acuerdo a las fechas del proyecto.
- 6.3 Planos disponibles. Informes de inspección. Calidad de ejecución.
- 6.4 Agrietamientos visibles. Hundimientos o asentamientos diferenciales.
- 6.5 Estado de elementos de unión.
- 6.6 Deflexiones excesivas.

7.- SERVICIOS KLECTRICOS, MECANICOS Y SUMINISTROS

- 7.1 S/E de alto voltaje; transformadores sobre ruedas.
- 7.2 Sistemas de comunicación: interno y externo.
- 7.3 Instalaciones aéreas (expuestas) u ocultas. Estado general.
- 7.4 Calderas. Anclajes. Flexibilidad de tuberías.
- 7.5 Líneas de suministro de gas (oxígeno u otro).
 Controles almacenamiento. Disposición de bombas o tanques.
- 7.6 Aire acondicionado central o individual. Riesgos.
- 7.7 Ascensores. Tipo y número.
- 7.8 Cocina. Instalaciones y riesgo de incendio.
- 7.9 Generador de emergencia.
- 7.10 Almacenamiento de combustibles. Tanques elevados o a nivel de piso.
- 7.11 Recolección de aguas de lluvia. Instalaciones de drenaje. Riesgo inundación.
- 7.12 Lámparas de corriente continua. Estantes de Baterías. Frecuencia de pruebas.

8.- RIESGO DE INCENDIO Y MEDIDAS PREVENTIVAS

- 8.1 Instalación asegurada. Póliza de incendio.
- 8.2 Sistemas de detección de humos.
- 8.3 Sistemas de extinción.

9 - ESTABILIDAD DE COMPONENTES NO-ESTRUCTURALES

- 9.1 Estantes de almacenamiento de productos infamables, tóxicos o radiactivos.
- 9.2 Previsiones de fijación, cierre de puertas, etc. para evitar derrames y fugas.
- 9.3 Estabilidad de bibliotecas, neveras y otro mobiliario con esbeltez mayor de 2.
- 9.4 Pizarrones, cuadros, acuarios, cargas en repisas altas. Estantes de baterías.
- 9.5 Computadoras, equipos de registro, TV, altoparlantes (velcro).
- 9.6 Meceteros, letreros, tabiques inestables, parapetos.
- 9.7 Falsos techos. Platones fijos o colgantes. Lámparas fluorescentes y luminarias. Ductos, tuberías u otros escondidos por falso techo.

10.- RUTAS DE EVACUACION O ESCAPE

- 10.1 Indicar en planos: escaleras, salidas de emergencias, rutas de evacuación a zonas de seguridad.
- 10.2 Señalización de rutas de escape.
- 10.3 Escaleras de acceso ofrecen facilidades de evacuación.
- 10.4 Las puertas abren hacia afuera. Son suficientemente amplias para caso de aglomeración.
- 10.5 Pueden caer objetos en áreas de escape.
- 10.6 Agravantes potenciales.

11.- PREVISIONES PARA CASO DE EMERGENCIA

- 11.1 Reacción de autoridades ante predicción inminente.
- 11.2 Plan de contingencia. Estructura organizativa (ver # 3).
- 11.3 Sistemas de alarmas. Umbral de activación. Audibles. Vulnerabilidad a vibraciones. Frecuencia de pruebas.
- 11.4 Reservas preventivas de medicamentos. Tipo y cantidad. Almacenamiento. Vulnerabilidad a: incendios, inundaciones, sismo.
- 11.5 Tanque de almacenamiento de agua de reserva.

 Revisiones y pruebas de bomba neumática.
- 11.6 Rutas de circulación de ambulancias. Riesgo de obstrucciones.
- 11.7 Areas de emergencia, triaje, intervenciones quirúrgicas.
- 11.8 Muebles que pueden ser usados como protección.
- 11.9 Medidas protectoras contra rotura de ventanas.
- 11.10 Señalización. No corra. No usar ascensores.
- 11.11 Responsable de planta de emergencia. Frecuencia de pruebas.

- 11.12 Experiencias. Simulacros. Frecuencia.
- 11.13 Previsiones para casos de incendio. Extintores.

 Periodicidad de revisión.
- 11.14 Ubicación de tableros de control.

APENDICE 2

EVALUACION PRELIMINAR DEL EDIFICIO PRINCIPAL

1.- PESO PROPIO DE LA ESTRUCTURA PORTANTE

Losas

De acuerdo a los planos disponibles las losas son nervadas de 30 cm de altura, con nervios de 12 cm de ancho. La sobrecarga por este concepto incluido el sobrepiso es de 550 kg/m^2 .

Vigas y Columnas

Para columnas con altura media de 3 m (secciones medias de $0,63 \times 0,67$ en base a la Tabla 1); y alturas de vigas de 0,40 con longitudes medias de 14,4 m se tiene:

$$\frac{(3 \times 0,63 \times 0,67 \times 4 + 0,35 \times 0,40 \times 14,4) \times 2500}{15 \times 6} = 200 \text{ kg/m}^2$$

Tabiquería

La tabiquería que define las habitaciones, pasillos, áreas de servicio y antepechos, está constituida por mampostería de bloques huecos con espesor de 20 cm aproximadamente. De acuerdo a COVENIN 2002 esto representa una sobrecarga de 280 kg/cm². Tomando en consideración alturas de 3 m y entre 0,15 a 0,20 ml de tabiquería por m², se obtiene una carga permanente de 150 kg/m².

Sobrecargas de Servicio

De acuerdo a la inspección realizada en todos los niveles. el muestreo hecho arroja cargas de servicio por equipos e instalaciones relativamente pequeñas en los pisos 11 a 3, y algo mayores en los pisos 2 y 1; conservadoramente estimadas las sobrecargas de servicio a considerar en el análisis sísmico no alcanzan los 100 kg/m². Las áreas más congestionadas y con equipos más pesados se identificaron en la Planta Baja. Para los días Martes a Jueves, en horas de la mañana, la suposición conservadora de que en el Edificio Principal pueda haber unas 5000 personas, o sea unas 500/piso en término medio, da lugar a una sobrecarga media de 16 kg/m². Por tanto la sobrecarga de servicio, para efectos de cálculo por sismo, se ha estimado en 150 kg/m², incluidos los pasillos que es 1/3 de la que corresponde a Salas de Operaciones, Laboratorios, y Vestíbulos; es más del 50% de la correspondiente a habitaciones.

Se supondrá toda la edificación ocupada, aún cuando en la actualidad hay áreas no ocupadas.

Otras Sobrecargas

De acuerdo a la información recabada en el último nivel no hay tanques de almacenamiento de agua, ni equipos pesados, salvo las Salas de Máquinas de los ascensores.

Peso Total

* Peso por unidad de área

Losa : 550 kg/m^2

Tabiquería : 150 kg/m²

Carga Viva actual: 150 kg/m²

Total : 850 kg/m²

* Peso vigas y columnas (h 3 m)

200 kg/m²

* Peso por Nivel

 $1,05 \text{ ton/m}^2 \times 1.630 \text{ m}^2 = 1.710 \text{ ton}$

* Peso edificio

1.710 \times (10 + 0,7) = 18.300 ton

2.- GEOMETRIA Y AREAS PORTANTES

* Altura total

$$11 \times 3,3m = 36,3 m$$

* Esbeltez máxima

$$36,3/13,55 = 2,7$$

* Area portante de las 92 columnas a nivel de P.B.

8 (75 x 30) + 64 (75 x 40) + 20 (85 x 60) = 31,20
$$m^2$$

3.- ESFUERZO PROMEDIO EN COLUMNAS

* $f'c = 250 \text{ kg/cm}^2$

*
$$n = \frac{18300 \text{ ton}}{31,2 \text{ m}^2} \times \frac{1}{2500} \approx 0,235$$

De acuerdo a la Tabla 3, este valor es algo menor en la realidad pués las dimensiones en el sitio superan en un 10% las de los planos.

4.- COEFICIENTE SISMICO

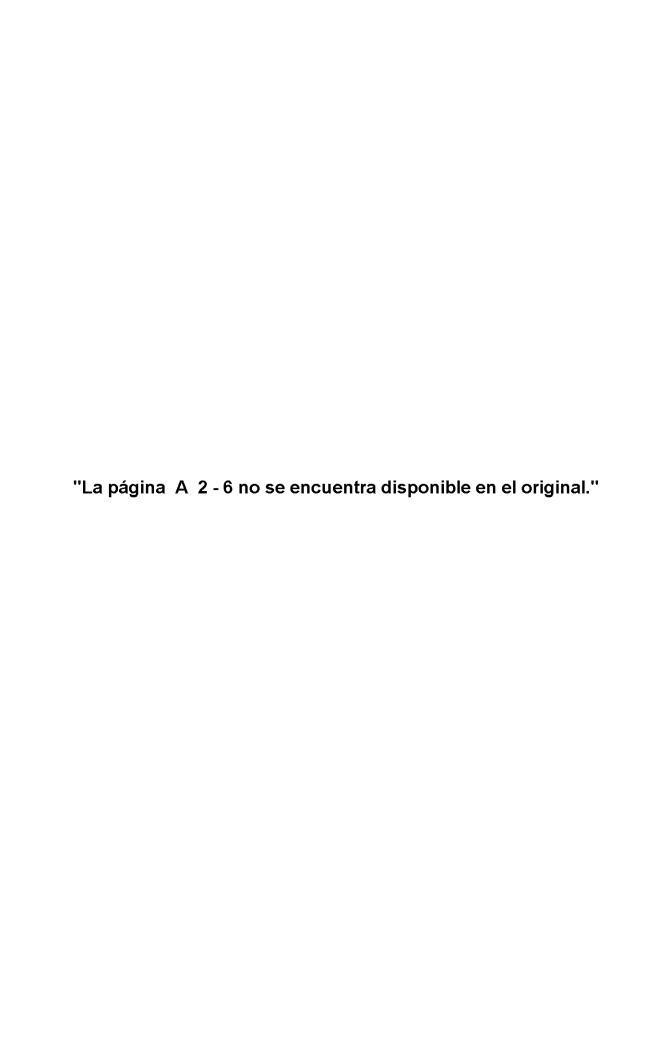
- * Estructura Tipo I
- * Suelo Tipo S1
- * Zona Sísmica 4; Grupo A

$$Ao = 0.30 g \times 1.25 = 0.375 g$$

* Período estimado

$$0,75$$
Ta = 0,061 x 36,3 = 0,90 seg

* Nivel de Diseño 1


$$D = 2.5$$

* Cortante Basal

Vo =
$$\mu$$
 Ad W/g

$$\mu = 0.86$$
Ad = $\frac{2.2 \times 0.375 \text{ g}}{2.5} (\frac{0.40}{0.90})^{0.80} = 0.172 \text{ g}$

$$V0 = 2707 \text{ ton}$$

* Acciones horizontales

W = q G C A
A = área expuesta = 36,3 x 120 = 4356 m²

$$q = 0,00485 \times 2,58 \left(\frac{z}{Zg}\right) \times \acute{O} \times V^{2}$$

 $g = 4,5$
 $g = 370 m$
 $g = 36,3 m$
 $g = 1,15$

 $q = 32 kg/m^2$

Aproximada la distribución como triangular:

V viento =
$$\lambda$$
 (32 + 20)
= 4356 x 52/1000 = 227 ton

V viento << Vsismo

La velocidad del huracán equivalente al coeficiente sísmico C = 0,148, es igual a:

$$V = 79$$
 $2707/227 = 273$ km/hora

Esta velocidad equivale a huracanes devastadores (Categoría 5 en la Escala Saffir-Simpson; Grado 6 en la Escala Internacional de Huracanes de la WMO).