3.3 ANALISIS DE VULNERABILIDAD - INUNDACIONES.

Introducción.

Los métodos de análisis para determinar la vulnerabilidad de un sistema, casi en su totalidad se refieren a desastres causados por terremotos. Las diferencias sustanciales entre este tipo de desastre con las inundaciones, hacen que estos métodos resulten totalmente inadecuados para aplicarlos en estos casos y no habiéndose encontrado en la literatura existente un método específico, se ofrece a los usuarios el método desarrollado a continuación, el cual se podrá ir perfeccionando durante su aplicación práctica.

Análisis de vulnerabilidad.

El método desarrollado considera un primer análisis de la vulnerabilidad del sistema, teniendo en cuenta la ubicación de las estructuras principales con relación al área inundada, y posteriormente, un ajuste considerando diversos factores locales, características del sistema y de la organización de la empresa responsable del servicio, que influyen modificando la vulnerabilidad del sistema.

A. Procedimiento de análisis.

- a. Levantar el plano de riesgo con los límites de inundación para 1, 5, 10, 25, 50 y 100 años.
- b. Sobreponer al plano de riesgo, un plano del sistema a la misma escala y determinar el porcentaje de redes de distribución de agua, de alcantarillado y las estructuras principales comprometidas por la inundación.
- c. Repetir este procedimiento para las inundaciones de 1, 5, 10. 25, 50 y 100 años.
- d. Determinar los limites de vulnerabilidad correspondientes a cada estructura comprometida, seleccionándolos de la Tabla 3 16. Para el caso de una planta de tratamiento, por ejemplo, este índice es de (-0,4) cuando la planta está inundada, y puede ir bajando dependiendo de la altura de agua dentro de la instalación, hasta un mínimo de cero para los casos en que no esté comprometida.
- e. La suma de índices para cada período de retorno dará el grado de vulnerabilidad correspondiente. La vulnerabilidad máxima será igual a (-1) y la mínima (0); estas vulnerabilidades corresponden a confiabilidades de (0) y (1), respectivamente.
- f. Aquellas estructuras principales que sean vulnerables en todas las inundaciones, constituirán los componentes críticos del sistema, para los cuales necesariamente, deberán implementarse medidas de protección.

Tabla 3 - 16 Indices de vulnerabilidad del sistema.

Estructura principales comprometidas	Indices de vulnerabilidad	
Ninguna	0	
Planta de tratamiento	-0,4 a 0	
Estación de bombeo-captación	-0,3 a 0	
Estaciones de rebombeo	-0,2 a 0	
Cisternas y reservorios	-0,1 a 0	
Pozos	-0,4 a 0	
100% de las redes de distribución de agua y alcantarillado	-0,2 a 0	

- g. Los índices de vulnerabilidad así determinados, serán modificados por una serie de factores que se mencionan a continuación y que dependen de las características locales, del tipo de sistema, de las características del diseño y de la organización de la empresa.
- B. Factores que modifican la vulnerabilidad del sistema.
 - a. La duración de la inundación.- Inundaciones instantáneas ocasionan menos daños que aquellas que tengan una duración de días o meses.
 - La pendiente de la cuenca.- Fuertes pendientes traerán como consecuencia altas velocidades que pueden producir una fuerte socavación del terreno y erosión de las estructuras.
 - c. El tipo de terreno.- Los terrenos fluidificables y ácidos van a presentar mayores problemas de socavación, asentamiento y corrosión.
 - d. El tipo de tecnología.- Soluciones altamente equipadas resultarán más vulnerables que aquéllas en que se tengan solamente estructuras hidráulicas.
 - e. El tipo de materiales de construcción.- El concreto armado y las tuberías de fierro dúctil o acero, pueden ofrecer mayor confiabilidad.
 - f. La adopción de criterios de diseños especiales durante el proyecto.- Este factor atenúa mucho el efecto de la inundación, disminuyendo los daños.
 - g. Existencia de un plan de emergencia específico.- Disminuye la vulnerabilidad del sistema, al conseguirse una mayor y más rápida organización durante la emergencia.
 - h. Existencia de equipos de emergencia.- Agilizan la restauración provisional del sistema y la implementación de algún nivel de servicio.
 - i. Existencia de un programa de mantenimiento rutinario.- Un sistema en buen estado de mantenimiento responderá mejor durante una emergencia.
 - j. Práctica rutinaria de la desinfección.- Facilita el control de calidad del agua durante la emergencia. En lugares donde no se ha aplicado con anterioridad las dosis empleadas son mayores y se tropieza con los problemas operacionales de implantar nuevos procesos.

C. Grado de influencia de los factores.

Cada uno de los factores anteriormente mencionados tenderán a modificar el índice de vulnerabilidad inicial, aumentándolo, o disminuyéndolo según sea la naturaleza del factor. Las Tablas 3 - 17 y 3 - 18 asignan un índice a cada uno de estos factores, índices que básicamente deben ser evaluados en cada caso, dependiendo de la magnitud del factor.

Tabla 3 - 17 Factores que modifican la vulnerabilidad de un sistema

Nº	Factores negativos	Indices	
	-	Max.	Min.
1	Larga duración	1,0	0.2
2	Fuerte pendiente(velocidades de más de 1 m/s)	1,0	0,2
3	Terrenos ácidos y/o fluidificables	1,0	0,2
4	Mucho equipamiento	1,0	0,2
5	Estructuras de ladrillo, adobe o madera	0,5	0,1
6	Tuberías de concreto, arcilla o asbesto - cemento	0,5	0,1
	Indice Total	5,0	1,0

Del análisis de los índices de las Tablas 3 - 17 y 3 - 18 se puede indicar que:

- La suma de los factores negativos es de (5) como máximo y de (1) como mínimo. Es decir, que la máxima vulnerabilidad de un sistema será de (-5) cuando en el primer análisis se obtenga el valor máximo de (-1) y en el segundo de (5), y la mínima de (0).
- La suma de los factores positivos es de (0,5) como máximo y de (1) como mínimo, es decir
 que si todos los factores han sido implementados, se puede atenuar la vulnerabilidad del
 sistema hasta en un 50%, permaneciendo igual en caso contrario.

Tabla 3 - 18 Factores que modifican la vulnerabilıdad del sistema.

		Indices	
Nº	Factores positivos	Max.	Min.
1	Diseño especial de redes y estructuras	0,20	0,4
2	Existencia de un plan de émergencia	0,10	0,2
3	Existencia de recursos para la emergencia-	0,10	0,2
4	Mantenimiento del sistema	0,05	0,1
5	Aplicación rutinaria de cloro	0,05	0,1

D Aplicación del método

La Figura 3 - 16 muestra el trazo de un sistema de distribución, localizado en una zona de alto riesgo a inundaciones, al cual se desea efectuar un análisis de vulnerabilidad. Las Figuras 3 - 17 y 3 - 18 muestran el plano topográfico y el plano de riesgo de la zona, respectivamente. El plano de riesgo (Figura 3 - 18) indica el contorno de las áreas inundadas por las tormentas de 10 y 25 años, respectivamente. Superponiendo el plano del sistema al plano de riesgo a inundaciones, determinamos las estructuras principales y el porcentaje de redes que queda dentro de la zona inundada. Los resultados se muestran en la Tabla 3 - 16.

De este primer análisis podemos ya determinar que la captación es el componente crítico.

Tabla 3 - 19 Parte del sistema comprometido con la inundación

2 70	Estructuras principales	Indices		
Nº		10	25	
1	Estación de bombeo-captación	-0,3	-0,3	
2	Planta de tratamiento	0	-0,4	
3	Reservorio	0	0	
4	Redes de distribución	0,010	0,056	
Indice de vulnerabilidad		-0,31	-0,756	

En el segundo análisis, teniendo en cuenta todos los factores modificatorios se obtuvieron los resultados indicados en la Tabla 3 - 20

Tabla 3 - 20

N₂	Factores modificatorios	Indices
1	Duración: 2 a 3 días	0,4
2	Velocidad	0,8
3	Terreno mixto: 60% del área es fluidificable	0,6
4	Sistemas equipados	1,0
5	Estructuras de concreto	<u>0,1</u>
6	Tubería de asbesto-cemento	0,7
Т	otal Negativos	3,6
1	Diseño clásico	0,4
2	No existe plan de emergencia	0,2
3	Recursos muy limitados	0,15
4	Mantenimiento sólo correctivo	0,08
5	Se clora normalmente	0,05
Т	otal Positivos	0,98

Al ser afectados los índices iniciales (Tabla 3 - 18), por los índices obtenidos del análisis de los factores positivos y negativos, se obtuvieron los resultados de la Tabla 3 - 21.

Tabla 3 - 21 Indices de vulnerabilidad modificados

Período de Retorno	Indices iniciales	Indices modificatorios		Indices Finales
		Positivo	Negativo	
10	-0,310	0,98	3,6	-1,09
25	-0,756	0,98	3,6	-2,66

Los resultados indican que la vulnerabilidad del sistema no es extrema, ya que de un máximo de (-5) se ha obtenido (-1.09) y (-2,66) para las inundaciones de 10 y 25 años, respectivamente. También se puede apreciar del análisis del Cuadro 5, que mejorando la operación, el mantenimiento y organizándose para la emergencia, se pueden atenuar estos índices. Al mejorar los índices positivos la vulnerabilidad podría disminuir a: -031 \times 0,52 = -0,16 para la inundación de 10 años y a: 0,756 \times 0,52 = -0,39 para la de 25 años.

Para levantar la vulnerabilidad restante, será necesario reubicar o elevar el nivel de operación de las estructuras principales localizadas dentro del área de inundación (Figura 3 - 18), con excepción por supuesto de las redes, las cuales podrían protegerse con un buen drenaje o reubicando a la población, caso extremo en que se tengan inundaciones muy frecuentes.

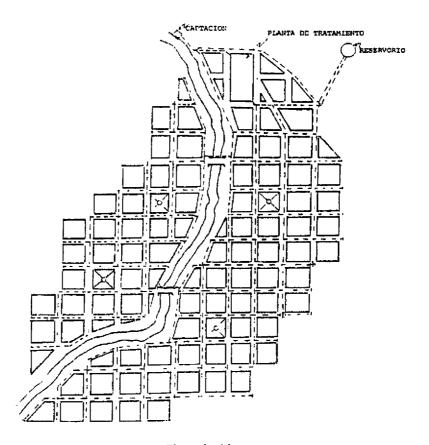


Figura 3 - 16
Plano del sistema de distribución de agua potable

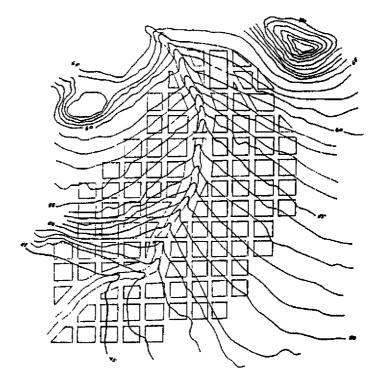


Figura 3 - 17 Plano Topográfico

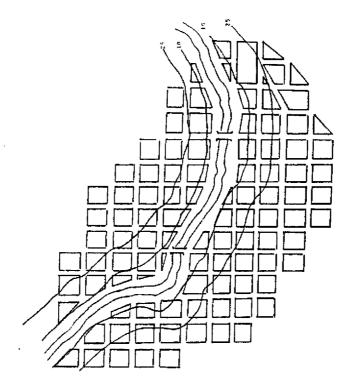


Figura 3 - 18 Plano de riesgo a inundaciones

REFERENCIAS BIBLIOGRAFICAS TERCERA PARTE

- AWWA. AMERICAN WATER WORKS ASSOCIATION (New York, U.S.). Emergency Planning for Water Utility Management. New York, AWWA, 1973. 94 p. AWWA Manual M-19.
- 2. HAMANN, C.L. & SUHR, L.C. Reliability and Redundancy Dual Protection for Water Treatment Plant. Journal AWWA, 72(4): 182-186, April 1980.
- 3 VALCOUR, H.C. Pumping Station Reliability How and How Much. Journal AWWA, 72(4): 187-191, April 1980
- FARRER, H. Análisis de Vulnerabilidad de Redes de Distribución de Agua Version Preliminar. Lima, CEPIS, 1981.
- SHAMIR, U.; HOWARD, C.D.D. Water Supply Reliability Theory. Journal AWWA, 73(7): 379-384, July, 1981
- 6. WANG, R.L. & CORNELL, H.A. Evaluating the Effects of Earthquake on Buried Pipelines. Journal AWWA, 72(4): 201-207, April 1980.
- WANG, L. Some Aspects of Seismic Resistant Design of Buried Pipelines. Third ASME US National Congress
 of Pressure Vessels and Piping. San Francisco, California (June, 1979).
- OPPENHEIM, IRVING "Simulation of Water System Seismic Risk". Journal Tech. Council ASCE, December, 1979.
- GRAL. LABURN, R. "Emergency Water Supply" Rand Water Board. IWSA XII Congress. Kyoto, October, 1978.
- PEREZ, J.M. Análisis de Vulnerabilidad. Programa Regional OPS/HPE/CEPIS de Mejoramiento de la Calidad del Agua para Consumo Humano. Submódulo 3.2.3.
- 11. GEOLOGICAL SURVEY PROFESSIONAL PAPER 1002. "The Guatemalan Earthquake of February 4, 1976. Preliminary Report. United States Government Printing Office, 1976.
- DEPARTMENT OF WATER AND POWER. City of Los Angeles. "Report of Water System Vulnerability to Earthquakes". March, 1974.
- HAGEN, TONY. "Report on the Earthquake Disaster in Peru, on 31 May, 1970 and its Aftermath". December, 1972.
- 14. CAJINA, ADAN. The Managua Earthquake and its Effects on the Water.
- 15. INFORME DE CURSO DE EVALUACION DE PLANTAS DE TRATAMIENTO DE AGUA. ERIS 1981.
- JOURNAL AWWA. Water Supply Protection Against Environmental Hazards Fuel Oil Contamination. Vol. 55, N 3 March, 1963.
- 17. PREVENCION Y MITIGACION DE DESASTRES, UNDRO, NACIONES UNIDAS. volumen 4: Aspectos Meteorológicos.
- 18. JOURNAL AWWA. Hurricane Experience in Nassau County. Vol. 37, N 6, p 512. June, 1945.

- JOURNAL AWWA. Referencias sobre Operaciones a Temperaturas Muy Bajas. Vol. 68, N 1. January, 1976.
- REFERENCIAS SOBRE EMERGENCIAS Y DESASTRES POR SEQUIAS: Journal AWWA, Vol. 70, N 2. February 1978.
 - a. Management Strategies: dealing with drought.
 - b. California's program for dealing with droght
 - c. Effects of the drought on the East Bay Municipal Utility

District (EBMUD)

The California Drought. Out of Disaster, Better Water

Management. Journal AWWA. Vol. 70, N 2. February 1980.

- 21. JOURNAL AWWA. Effects of the Good Friday Earthquake on Water Supply. Vol. 57, N 2, p. 123. February 1965.
- 22. REPORT ON WATER SYSTEM, VULNERABILITY TO EARTHQUAKES. City of Los Angeles, Department of Water and Power. March, 1974.
- JOURNAL AWWA. Earthquake: Correlation Between Pipeline Damage and Geologic Environment. Vol. 68, N 3, p. 165. March, 1976.
- 24. ERIS-OPS. Manual del II Seminario sobre Ingeniería Sanitaria en Situación de Desastre, Guatemala. Octubre, 1976.
- O'ROURKE, M.; WANG, L.K.L. Seismic Vulnerability, Behavoir and Design of Underground Piping Systems II.
- 26. O'ROURKE M.; WANG, L.K.L. Earthquake Response of Buried Pipeline.
- 27. O'ROURKE, M.; CASTRO, G. Effects of Seismic Wave Propagation Upon Buried Pipelines.
- 28. O'ROURKE, M.; SINGH, S.; PIKUL, R Seismic Behavoir of Buried Pipelines.
- 29. WANG, L.K.L.; O'ROURKE, M. State of the Art of Buried Pipeline Earthquake Engineering.
- 30. WANG, L.K.L.; O'ROURKE, M. Overview of Buried Pipelines Under Seismic Loading.
- 31. O'ROURKE, M.; WANG, L.K.L.; PIKUL, R. Seismic wave Effects on Water Systems.
- 32. PIKUL, R.; WANG, L.K.L.; O'ROURKE, M. Seismic Vulnerability of a Water Distribution System. A Case Study
- 33. WANG, L.K.L.; CORNELLE, H. Evaluating the Effects of Earthquakes on Buried Pipelines. Journal AWWA, Vol. 72, N 4. April 1980.
- 34. LARKIN, D. Readiness for Earthquake Seismicity Studies. Journal AWWA, Vol. 61, N 8. August 1969.
- HAZEN, R. Managua Earthquake: Some Lessons in Design and Management. Journal AWWA, Vol. 67, N 6. June 1975.
- KACHADOORIAN, R. Earthquake: Correlation Between Pipeline Damage and Geologic Environment. Journal AWWA, Vol. 68, N 3, March 1976.
- 37. CONTENDING WITH EARTHQUAKE DISASTER. Journal AWWA, Vol. 65, N 1, January 1973.
- PREVENCION Y MITIGACION DE DESASTRES, UNDRO, NACIONES UNIDAS. Volumen 1: Aspectos Vulcanológicos.

- EPA. OFFICE OF WATER PROGRAM OPERATIONS. Emergency Planning for Municipal Wastewater Treatment Facilities. Washington, D.C., EPA, 1974.
- OPS/EHP/CEPIS. Tratamiento de Agua en Situaciones de Emergencia: Operaciones Eventuales. Lima, CEPIS, 1981.
- 41. EPA. OFFICE OF WATER PROGRAM OPERATIONS. Handbook for Sewer System Evaluation and Rehabilitation. Washington, D.C., EPA, 1975.
- LOTHAR HESS, MAX. Algunas Prácticas de construcción de Lagunas de Estabilización. Curso para Ingenieros sobre Operación y Mantenimiento para lagunas de Estabilización de Aguas Residuales Residuales. Lima, CEPIS, 1980. Publicación LAG.-12.
- OPS. Manual de Programación y Control de Proyectos de Ingeniería Sanitaria. Washington, D.C., OPS, 1969. Serie Técnica 4, 161 p.
- MANCEBO DEL CASTILLO, J. Terminologia Empleada para los Sistemas de Alcantarillado. Monterrey, Universidad Autónoma de Nuevo León, 1971.
- PAZ SANCHEZ, A. Alcantarillado Pluvial. Curso sobre Sistemas de Alcantarillado. Monterrey, Universidad Autónoma de Nuevo León, 1971.
- EPA. OFFICE OF WATER PROGRAM OPERATIONS. Value Engineering Workbook for Constructions. Grant Projects. Washington, D.C., EPA, 1976.
- 47. O'ROURKE, M.J. Behavoir of Water and Sewer Pipelines During Earthquakes. Draft.
- 48. LOPEZ RUIZ, R. Efectos de Inundaciones, Huracanes y Terremotos sobre Sistemas de Agua Potable, Alcantarillado y Disposición de Excretas. Segundo Seminario sobre Ingenieria Sanitaria en Situación de Catástrofe. Guatemala, Universidad San Carlos, 1976.
- ESPINOZA, V.H. Análisis de Algunos Daños que Podrían Provocar los Desastres a los Servicios de Agua Potable y Alcantarillado. Segundo Congreso Chileno de Ingeniería Sanitaria. Santiago, 1977.
- FRANCA. J.; LEITE SILVA, J.L. Situaciones de Emergencia. Curso de Operación y Mantenimiento de Redes de Alcantarillado Sanitario. Sao Paulo, CETESB, 1970.
- PEÑARANDA, W. Explotación, Operación, Mantenimiento de Redes de Alcantarillado. Financiamiento y Tarifas. Curso Sobre Sistemas de Alcantarillado. La Paz, Universidad Mayor de San Andrés, 1967.
- 52. BOQUIN, J.R. Operación y Mantenimiento de los Alcantarillados. Curso de Diseño y Construcción de Alcantarillados. Tegucigalpa, Universidad Nacional Autónoma de Honduras, 1969.
- LOTHAR HESS, MAX. Algunos Ejemplos Prácticos de Diseño de Lagunas de Estabilización. Curso para Ingenieros sobre Operación y Mantenimiento de Lagunas para Estabilización de Aguas Residuales. Lima, CEPIS, 1980.
- 54. YAÑEZ, F. Lagunas Facultativas y de Alta Producción de Biomasa. Curso para Ingenieros sobre Operación y Mantenimiento de Lagunas de Estabilización de Aguas Residuales. Lima, CEPIS, 1980.
- OSSIO, E. Procesos de Pretratamiento. Clasificación y uso de los Diferentes Tipos de Lagunas de Estabilización. Curso para Ingenieros sobre Operación y Mantenimiento de Lagunas de Estabilización de Aguas Residuales. Lima, CEPIS, 1980.
- 56. YAÑEZ, F. Control y Manejo del Proceso de Lagunas de Estabilización Curso para Ingenieros sobre Operación y Mantenimiento de Lagunas de Estabilización de Aguas Residuales. Lima, CEPIS, 1980.

- 57. HURST, D. WILLIAM. Winnipeg's Flood Organization. Journal AWWA. December, 1950.
- 58. BUSH, BERNARD & BARRICK J.M. Emergency Experiences during Flash Floods. Journal AWWA, 1943.
- 59. VEATCH, N.T. The Kansas Flood of 1951. Journal AWWA. September, 1952.
- 60. METZLER, D., CULP, C.L. & KINCAID, R.G. Interruptions to Water Service by the Kansas Flood of 1951. Journal AWWA. September, 1952.
- 61. CORREA, PEDRO. Experiencias de la Operación y Mantenimiento del Sistema de Agua Potable de Sullana Durante la Inundación de 1983. Lima, Perú. Noviembre, 1983.
- 62. GIANELLA, JORGE. Estudio Hidrológico de Sullana, Lima, Perú. 1983.
- 63. MEDRANO, CESAR A. Experiencias de Operación y Mantenimiento del Sistema de Agua Potable del Eje Paita-Talara. Lima, Perú. Noviembre 1983.
- 64. PIEDRA, MARCELO. Consideraciones sobre los Efectos de los Temporales e Inundaciones en los Servicios de Saneamiento del Litoral. Ecuador, 1983.