NOTICE

This report was prepared by Brigham Young University as a result
of research sponsored by the National Center for Earthquake En-
gineering Research (NCEER) through grants from the National
Science Foundation, the New York State Science and Technolo-
gy Foundation, and other sponsors. Neither NCEER, associates
of NCEER, its sponsors, Brigham Young University, nor any per-
son acting on their behalf:

a. makes any warranty, express or implied, with respect to the
use of any information, apparatus, method, or process
disclosed in this report or that such use may not infringe upon
privately owned rights; or

b. assumes any liabilities of whatsoever kind with respect to the
use of, or the damage resulting from the use of, any informa-
tion, apparatus, method or process disclosed in this report.

Any opinions, findings, and conclusions or recommendations
expressed in this publication are those of the author(s) and do
not necessarily reflect the views of the National Science Founda-
tion, the New York State Science and Technology Foundation,
or other sponsors.



L 0

Empirical Analysis of Horizontal Ground Displacement
Generated by Liquefaction-Induced Lateral Spreads
by

S.F. Bartlett and T.L.. Youd

August 17, 1992

Technical Report NCEER-92-0021

NCEER Project Number 90-1505

NSF Master Contract Number BCS 90-25010
and
NYSSTF Grant Number NEC-91029

1 Research Assistant, Civil Engineering Department, Brigham Young University
2 Professor, Civil Engineering Department, Brigham Young University

NATIONAL CENTER FOR EARTHQUAKE ENGINEERING RESEARCH
State University of New York at Buffalo
Red Jacket Quadrangle, Buffalo, NY 14261




PREFACE

The National Center for Earthquake Engineering Research (NCEER) was established to expand
and disseminate knowledge about earthquakes, improve earthquake-resistant design, and imple-
ment seismic hazard mitigation procedures to minimize loss of lives and property. The emphasis
is on structures in the eastern and central United States and lifelines throughout the country that
are found in zones of low, moderate, and high seismiciry.

NCEER’s research and implementation plan in years six through ten (1991-1996) comprises four
interlocked elements, as shown in the figure below. Element I, Basic Research, is carried out to
support projects in the Applied Research area. Element II, Applied Research, is the major focus
of work for years six through ten. Element III, Demonstration Projects, have been planned to
support Applied Research projects, and will be either case studies or regional studies. Element
IV, Implementation, will result from activity in the four Applied Research projects, and from
Demonstration Projects.

ELEMENT | ELEMENT II ELEMENT Ill
BASIC RESEARCH APPUIED RESEARCH DEMONSTRATION PRCJECTS
+ Selsmic hazard and + The Building Preject Case Studies
ground motion + Active and hybrid control
« The Nonstructural + Hospital and data processing
+ Solls and geotechnical Components Project facliities
enginaering « Short and medium span
+ The Lifelines Project bridges
» Structures and systems - Water supply systems in
. + The Bridge Project Memphis and San Francisco
Risk and rellability Reglonal Studles
» Protective and » New York City
intelligent systems » Mississippi Valley

+ San Francisco Bay Area
» Societal and economic

studies
& ELEMENT IV

IMPLEMENTATION

Conferences/Workshops
Education/Tralning courses
Publications

Public Awareness

Tasks in Element I, Basic Research, include research in seismic hazard and ground motion; soils
and geotechnical engineering; structures and systems; risk and reliability; protective and intelli-
gent systems; and societal and economic impact.

The soils and geotechnical engineering program constitutes one of the important areas of
research in Element I, Basic Research. Major tasks are described as follows:
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Perform site response studies for code development.

2. Develop a better understanding of large lateral and vertical permanent ground deforma-
tions associated with liquefaction, and develop corresponding simplified engineering
methods.

3. Continue U.S. - Japan cooperative research in liquefaction, large ground deformation,
and effects on buried pipelines.

4.  Perform soil-structure interaction studies on soil-pile-structure interaction and bridge
foundations and abutments, with the main focus on large deformations and the effect of
ground failure on structures.

5. Study small earth dams and embankments.

This report describes an empirical model for estimating the horizontal ground displacement
caused by liquefaction-induced lateral spreads. The model was developed from multiple linear
regression analyses of data pertaining to earthquake, topographical, and geological variables
for Japanese and U.S. earthquakes. Two types of lateral spreads are distinguished in the model:
lateral spread toward a free face; and lateral spread down gentle ground slopes. Horizontal
movement associated with free face lateral spreads was found to correlate with the logarithm of
the free face ratio, which is the height of the free face divided by horizontal distance from the
free face. In contrast, displacement associated with ground slope failure is strongly correlated
with the steepness of the ground slope. The model is expressed as a multiple linear regression
equation linking lateral movement with moment magnitude of the earthquake, distance from the
seismic source, free face ratio, ground slope, thickness of saturated granular soil with a modified
standard penetration value [(N )q,] less than or equal to 15, (N, ), of the soil with lowest factor

of safety against liquefaction, and depth to the soil with lowest safety factor against liquefaction.
Because the model was developed for a wider range of seismic and site conditions than utilized
in previously proposed empirical models, it is more general and will result in better estimates.
The model appears to give the best predictions for earthquakes with moment magnitudes of 6.5
to 8.0 at sites underlain by sands and siity sand layers with (N,),, < 15 and thickness greater
than 0.3 m at depths less than 15 m. The model does not appear to work well for gravels with
mean grain sizes greater than 2 mm. Because the model was primarily developed from western

U.S. and Japanese data, it is best suited to regions that have high to moderate ground motion
atteauation.

v



ABSTRACT

Liguefaction-induced ground failure is responsible for coneiderable damage to
engineered structures during major earthquakes. Presently, few empirical
techniques exist for estimating the amount of horizontal ground displacement
resulting from ligquefaction-induced lateral spread. None of these techniques
fully addresses all the earthquake and site conditions known to influence ground
displacement.

This study compiles earthquake, geological, topographical, and scil factors that
affect ground displacement and develops empirical models from these factors.
Case histories of lateral spread are gathered from the 1906 San Francisco, 1964
Alaska, 1964 Niigata, 1971 San Fernando, 1979 Imperial Valley, 1983 Nihonkai-
Chubu, 1983 Borah Peak, Idaho, and 1987 Superstition Hills earthguakes. Multiple
linear regression (MLR) is used to develop empirical models from the compiled
data. Two general models are derived herein, one for free face failures and one
for ground slope failures. The predictive performance of the proposed empirical
models is determined by comparing predicted displacements with those actually
measured at the case history sites.
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