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FIGURE 2-5 View of Testing Arrangement in Low
Temperature Tests

FIGURE 2-6 Viaw of Testing Arrangement in High
Temperature Tests
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property was obtained in additional tests with constant velocity
motion (sawtooth displacement}. Figure 2-9 shows the recorded
force-displacement lcop in one such test with amplitude of 0.5 in
(12.7 mm) and constant velocity of 12.6 in/sec (320 mm/sec).
Evidently, the output force is independent of amplitude.

Within the temperature range of about 0°C to 50°C, the device
apparently exhibits a dependency of its mechanical properties on

temperature. This dependency is discussed in detail in the next
subsection. However, it 1s worthy of mentioning that this
dependency is not significant. The reader may confirm in the

results of Table 2~-II (tests 16 to 20) that within the
aforementioned range of temperatures, the loss stiffness of the
damper reduces by a factor of less than 2. For comparison,
viscoelastic material dampers exhibit a close to 50-fold decrease

in about the same range of temperatures (see discussion in Section
1.3).

2.5 Mathematical Modeling

Over a large frequency range, the damper exhibits viscoelastic
fluid behavior. The simplest model to account for this behavior is
the Maxwell model (Bird 1987).

The Maxwell model is defined at the macroscopic level as
P+ AP =C,u (2~13)

where A is the relaxation time, and C, is the damping constant at

zero frequency. A more general Maxwell model may also be
considered in which the derivatives are of fractional order (Makris
1991)

P + AD"[P] = C,DY[u] (2-14)
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where D*{ f(t)] 1is the fractional derivative of order r of the time
dependent function f. For complex viscoelastic fluid behavior,
Equation 2-14 may offer more control than Equation 2-13 in modeling

the behavior.

The generalized Maxwell model was initially considered. The
parameter g was set equal to unity based on the assumption that the
damping coefficient of the device is independent of the velocity

over a wide range of values. For g =1, the parameter (C, becomes

the damping constant at zero frequency. Parameters A and r were
then determined by curve fitting of experimental values of C and

K, versus the frequency of motion. Analytical expressions for the

mechanical properties are given by

nr

C A sin(T) (2-15)

d

- nr
R Awrcos () ] (2-16)
o d
d=1+ AM®* + 2 A0°Cos (%) (2-17)
d = tan! (gij {2-18)
1

The calibration of the model of Equation 2-14 was performed for the
case of rcom temperature, for which experimental data over a wide

frequency range were availlable. The calibration resulted in
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parameters r =1, g=1, A =0.006 secs and C, = 88 lb-sec/in (15.45
N-sec/mm) . Interestingly, the calibrated model is the classical
Maxwell model. A comparison of experimental and analytically
derived properties of storage stiffness, damping coefficient and
phase angle is presented in Fagure 2-10. The comparison is very
good except for frequencies above 20 Hz, where the model
underpredicts the storage stiffness. Such frequencies are

typically not considered in seismic analysis.

Furthermore, the model predicts nonzero storage stiffness in the
low frequency range (< 2 Hz). The predicted storage stiffness is
insignificant for practical purposes.

The damper exhibits a relaxation time of only 6 msec. This
indicates that for low rates of damper force, the term AP in

Equation 2-13 is insignificant. This occurs for frequencies below
a cutoff value of abcout 4 Hz, Accordingly, for typical structural

applications the term AP may be neglected. This will be confirmed

in a subsequent section where shake table results are compared to
analytical results.

The model of the damper below the cutoff frequency is simply

P =Cnu (2-19)

and, thus, for most practical purposes the damper behaves as a
linear viscous dashpot.

The effect that temperature has on the single parameter of the

model, C,, 1s investigated in Figure 2-11. The recorded peak force

in each test is plotted against the imposed peak velocity for the
three values of temperature. It may be seen that the experimental

results may be fitted with straight lines with slope equal to C,.
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For room temperature (24°C) and above, the behavior is indeed
linear viscous to velocities of about 20 in/sec (508 mm/sec} and

beyond. As temperature drops, the experimental results deviate
from linearity at a lower velocity.

The values of constant €, in Figure 2-11 demonstrate that the

damper exhibits a stable behavior over a wide range of

temperatures. Between about 0°C and 50°C, constant C, reduces by

a factor of less than 2. Assuming that a design for a building
application will be anchored at a temperature of about 24°C,
variations of temperature in the range of 0°C to 50°C will result
in variations of the damping ratioc of +44% to -25%. That is, if a
design calls for a damping ratio of 20% of critical, extreme
temperature variations will alter the damping ratio in the range of
15% to 29% of critical.
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