SECTION 6
ANALYTICAL PREDICTION OF RESPONSE

6.1 Time History Response Analysis

The time history analysis of a multi-degree-cf-freedom structure
subjected to earthquake excitation begins with the equations of
motion for the lumped mass model which have been given previously
as Equations 4-26 to 4-28. The mass matrix, [Ml, 1is diagonal.
The stiffness matrix, fK], and damping matrix, [C,1, are
constructed either analytically or, as in the case of a model
structure, from experimentally determined values of frequencies,

damping ratios, and mode shapes (see Equations 4-24 and 4-25).

Application of Fourier Transform to Equations 4-26 to 4-28 results

in
{g}=- [3}-1[M1{1}Eg (6-1)
and
— ieC, ,cos268, _ _
- 3 3 _ -
B, = 1o+ o (@, - &) (6-2)

Matrix [S] is given by Equations 4-30 to 4-34. Equations 6-1 and
©-2 can be sclved numerically for the relative displacement vector,

{u}, and horizontal component of damper force, P., by employing the

jl
discrete Fourier transform in combination with the Fast Fourier

transform (Veletsos and Ventura 1985):

{u(t)} = [5)7 (M) {1}T, et dov (6-3)

b3

-1
i

P,(t) = B, ei®t do (6-4)

P

1
2n
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Relative acceleration vectors are determined by an expression
identical to Equation 6-3 but with the term -0’ multiplying the
inverse of the dynamic stiffness matrix, [S]7°. The total

acceleration vector, {UJ, is then obtained from
{u,} = () + {1}y, (6-5)

The computed total acceleration histories are used 1n the
calculation of the story shear forces.

The time-history analysis for a single-degree—-of-freedom structure

is similar to the above development but with some simplifications.

6.2 Comparison of Experimental and Analytical Time History
Responses

Experimental results are compared with the analytical results for
the one-story unstiffened and stiffened structures in Figures 6-1
through 6-3 and Figures 6-4 through 6-5, respectively. The base
shear force versus drift and the total axial damper force versus
axial damper displacement are plotted for selected tests. The
comparisons show good agreement.

It should be noted that, in general, the damper force - damper
displacement loops (e.g., see Figures 6-2(b) and 6-4(b) are
predicted wvery well from the analytical model. However, the

analytical model tends to underpredict the story drift. The reader
should recall that the two displacements were directly measured by
different instruments which recorded a difference between the two
quantities (see Tables 5-I and 5-II). The difference was caused by
slippage 1in the Jjoints of the braces. This slippage was not
accounted for in the analytical model.
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1-STCRY, 4 DAMPERS, PACOIMA DAM 75%
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FIGURE 6-3 Comparison of Experimental and Analytical

Rasults for the One-story Unstiffened
Structure with Four Dampers Subjected to
Pacoima 75% Motion (1 in. = 25.4 mm)
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1-STORY, 4 DAMPERS, HACHINOHE 150%
STIFFENED STRUCTURE
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FIGURE 6-5 Comparison of Experimental and Analytical

Results for the One-story Stiffened
Structure with Four Dampers Subjected to
Hachinohe 150% Motion (1 in. = 25.4 mm)



The analytical response is compared for the cases of A =0 (viscous
model) and A = 0.006 secs (Maxwell model) in Figures 6-6 and 6-7.
The base shear force versus drift and the total axial damper force
versus the axial damper displacement are plotted for selected
tests. The comparisons show that approximating the damper behavior
as purely viscous (A =0) will give nearly identical results to the

more accurate visceoelastic behavior.

Comparisons of analytical and experimental story shear force versus
story drift loops of the 3-story structure are presented in Figures
6-8 through 6-11. Furthermore, Figures 6~12 and 6-13 compare loops
of the total axial damper force at the first story versus axial
damper displacement in the 3-story structure. Again, the
comparison shows good agreement.

Finally, Figures 6-14 and 6-15 compare analytical results obtained
with the Maxwell model (A = 0.006 secs) and the simple viscous
model (A = 0) representing the behavior of the fluid dampers. The
first story shear versus drift and the total axial damper force at
the first story versus the axial damper displacement are plotted
for selected tests. These figures confirm that the simple viscous
model 1is appropriate for analysis.

6.3 Response Spectrum Analysis Method

The comparison of analytical to experimental results in Section 6.2
demonstrated that the simple viscous model for fluid dampers is
sufficiently accurate. In this respect, a structure with added
fluid dampers may be modeled as a non-proportionally viscously
damped system. This enables the development of an approximate
method of analysis using response spectra. The advantage of this
method over a time history analysis is that it directly gives the

peak response by use of the usual design specification (i.e., the
design spectrum).
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FIGURE 6-7 Comparison of Analytical Results with the Viscous
(A = 0) and Maxwell (A = 0.006 secs) Models for
the One-story Stiffened Structure with Four
Dampers Subjected to El1 Centro 100% Motion
(1 in. = 25.4 mm)
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The application of the response spectrum analysis method requires
that estimates of the structural properties are available.

6.3.1 Approximate Determination of Structural Properties

Approximate methods for the determination of the frequencies, mode
shapes and damping ratics of non-classically damped structures have
been successfully applied in problems involving soil-structure
interaction (e.g., Novak 1983; Constantinou 1987). Veletsos (13986)
presented a comprehensive treatment of the method.

The method starts with the assumption that frequencies and mode
shapes of the non-classically damped structure are identical to
these of the undamped structure. Typically, these guantities are

determined in a standard eigenvalue analysis.

The modal damping ratios are determined from an analysis involving
energy considerations. The damping ratio in the Xx-th mode of

vibration may be expressed as

gk = &str‘ + (6—6)

AL,

where ﬁsu. is the damping ratio due to damping inherent to the

Structure, W, is the work done by the dampers in a single cycle of

motion, and L, is the maximum strain energy. W, may be expressed
as
TR
We =3 ijd(uj— Uyq) (6-7)
R

where P, is the horizontal component of the force in the dampers at
the j-th story, and u, is the modal displacement of the j-th
floor. For the case of purely viscous dampers, it can be shown

that
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P, = C,cos?9,(¢, - ¢,,)@,cos (@) (6-8)

where C, is the combined damping coefficient of the dampers at the
j-th story, 91 is the angle of inclination of the dampers at the
j-th story, ¢, is the modal displacement of the j—th floor in the
k-th mode of vibration, and ®, is the frequency of vibration in the

k-th mode. Combining Equations 6-7 and 6-8, W, can be written as

Wk = nmk; CjCOSZGj (¢J - ¢j-l)2 (6_9)

The maximum strain energy is equal to the maximum kinetic energy,
so that

L, = (KE),, = %E m, 9% (6-10)
1

Combining Equations 6-6, 6-3% and 6-10, the damping ratio of the

structure in the k—-th mode of vibration is determined to be
Y Ccycos?8, (9, - 6,7

e, =&, + 13 _ (6-11)
‘ "2 @, m0]
3

It is clear from Equation 6~11 that in order to have the greatest
contribution to the modal damping ratic, the dampers should be

placed at story levels where the modal interstory drift(¢j-¢j4)

is maximum.

The accuracy of the simple energy approach in determining the
damping ratios of the tested structures is demonstrated in Tables
6-1 and 6-II. The tables include the damping ratios calculated by
the complex eigenvalue approach of Section 4 wherein the calibrated
rigorous Maxwell model is utilized for the fluid dampers. The
calculation was repeated by utilizing the simple viscous model and,
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thus, solving exactly the eigenvalue problem of the non-classically
damped structure (A was set equal to zero). Finally, the procedure

of Equation 6-11 was employed.

The results demonstrate that the damping in the fundamental mode is
predicted very well by the energy approach. In addition, the
energy approach provides reasonable approximations to the damping
ratios of the higher modes. The error in the calculation of the
higher mode damping ratios is due to neglect of the stiffening
effect of the tested filuid dampers at frequencies exceeding about
4 Hz,

6.3.2 Determination of Peak Response

The determination of the peak structural response to an excitation
described by a response spectrum requires that the peak response in
each significant mode of vibration be evaluated first (Clough
1975). The required mode shapes, frequencies and damping ratios
are determined by the procedures described in Section 6.3.1. The
calculated peak modal responses are then combined by an appropriate
combination rule to give estimates of the peak response.

The only complexity in the application of this approach is that of
constructing high damping response spectra from the usually
specified 5%-damped spectra. A recent study on this problem has
been reported by Wu (1989). However, it may be appropriate to
include de-amplification factors of design spectra at high damping
in future design requirements of structures with supplemental
damping devices, Thigs will ensure uniformity, reasonable
conservatism and avoidance of gross errors.
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6.4 Comparison of Experimental, Time HKistory, and Responsa
Spectrum Results

Comparisons of peak response of interest in design (i.e., story
shear forces and interstory drifts) are presented in Tables 6-II1
through 6-VI for the 3-story structure with 4 dampers subjected to
the Taft 200% excitation, and for the structure with 6 dampers
subjected to the Miyagiken 200%, Hachinohe 100%, and El Centro 150%
excitations, respectively. The peak response is given
experimentally and analytically as calculated by time history
analysis and by the response spectrum approach. For the
application of the response spectrum approach, the high damping
displacement and acceleration spectra of Figures 3-10 to 3~14 were
utilized. Interpolation was used for values of damping ratio not
included in these figures.

The peak responses as determined by all four methods compare well.
The prediction of story shear forces 1is very good but the
prediction of interstory drifts 1is less accurate. The reader
should recall that slippage occurred in the joints of the damped
frame. This effect was not accounted for in the analytical models.
The simple response spectrum approach yields results which are
accurate enough for design purposes.
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SECTION 7
CONCLUSIONS

A combined experimental and analytical study of an energy absorbing
system for structures, consisting of fluid viscous dampers, has
been presented. Tests were conducted on one- and 3—-story model
structures with various configurations of dampers. Dampers were
placed either along the entire height of the 3-story structure, or
concentrated at the level of expected peak interstory drift. Tests
were also conducted on the bare frame in a configuration resembling
a moment resisting frame.

A comprehensive. component test program on the fluid dampers was
conducted. The test program evaluated the behavior of the dampers
in a range of frequencies varying between essentially zero and 25
Hz, a range of amplitudes of essentially zerc to 1 inch (25.4 nmm),
and a range of temperatures between about zero and 50°C. The
component tests resulted in a database of mechanical properties
which enabled the development of a rigorous mathematical model.

The mathematical model was utilized in the time history analysis of
the tested structures with very good results. Furthermore,
simplified models and methods of analysis were developed, evaluated
and shown to produce results 1in good agreement with the
experiments.

The important conclusions of this study are summarized below:

a) Fluid viscous dampers may be designed to exhibit a behavior
which is essentially linear viscous for frequencies of motion
below a certain cutoff frequency. For the tested damper this
frequency was equal to about 4 Hz. Beyond this frequency the
dampers exhibit wviscoelastic behavior.

b) Fluid dampers may be modeled over a wide range of frequencies
by the classical Maxwell model. However, since the cutoff
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c)

d)

e)

£)

frequency is usually above (or they can be designed so) the
frequencies of dominant modes of the structure, the dampers
may be modeled as simple linear viscous dampers.

Temperature has a minor effect on the behavior of the tested
fluid dampers. Due to a special design with a passive
temperature—-compensated orifice, the tested dampers exhibited
variations of their damping constant from a certain value at
room temperature (24°C) to +44% of that value at 0°C to -25%
of that value at 50°C. This rather small change in properties
over a wide range of temperatures is in sharp contrast to the
extreme temperature sensitivity of viscoelastic dampers.

The inclusion of fluid wviscous dampers in the tested
structures resulted in reductions in story drifts of 30% to
70%. These reductions are comparable to those achieved by
other energy dissipating systems such as viscoelastic,
friction and yielding steel dampers. However, the use of
fluid dampers also resulted in reductions of story shear
forces by 40% to 70%, while other energy absorbing devices
were incapable of achieving any significant reduction.

Fluid dampers are capable of achieving and surpassing the
benefits offered by active control systems with the additional
benefits of low cost, no requirements for power, longevity and
reliability.

Due to their viscous nature, fluid dampers reduce drifts and
thus column bending moments, while introducing additional
column axial forces which are out-of-phase with the bending
moments. In effect, this behavior prevents the possibility of
compression failure of weak columns in retrofit applications.
Time history analyses of structures with added fluid dampers
may be more conveniently performed by application of Discrete
Fourier transform since the dampers exhibit linear behavior.
Such analyses were performed for the tested structure with the

results being in good agreement with the results of the
experiments,



h)

A simplified method for calculating the modal characteristics
of structures with added fluid dampers was developed and
verified. The method was used to obtain estimates of peak
response of the tested structures by utilizing the response
spectrum approach. The obtained results demonstrated that the

simplified method is sufficiently accurate for design
purposes.
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