A GENERALIZATION OF OPTIMAL CONTROL THEORY:
NONLINEAR CONTROL

PART II



SECTION 1
INTRODUCTION

A combined use of active and passive control systems, referred to as the hybrid
control system, has been demonstrated to be very effective for seismic-excited civil
engineering structures.  Various hybrid control systems have been investigated for
applications to protect building and bridge structures [e.g., 2-5, 7-8, 13-22 and Refs. in
Part I]. However, the application of hybrid control systems involves active control of
nonlinear or hysteretic structures, since most passive control devices, such as lead-core
rubber-bearing isolation systems, behave either nonlinearly or inelastically.

Control laws can either be linear or nonlinear. Linear control theories for linear
structures have been available in the literature. However, control theories for nonlinear
structures are limited and intensive research efforts have been made. Recently, instantaneous
optimal control has been proposed for applications to nonlinear and hysteretic structures
successfully [e.g., 18-21]. In particular, the stable controllers are obtained by use of the
Lyapunov direct method [e.g., 20-21]. Basically, the control law proposed in these previous
works is the linear control law. Various control laws for discrete pulse control, that is
nonlinear in nature, have been proposed for applications to nonlinear civil engineering
structures [e.g., 6, 71.

Another control method proposed for applications to buildings equipped with
frictional-type sliding isolation systems is the method of dynamic linearization [Ref. 22].
The method of dynamic linearization is to synthesize the control vector so that the response
of the controlled structure matches that of a specified system, referred to as the template
system [e.g., 1, 9], whereas the response characteristics of the template system is known.
This control method has been applied successfully to seismic-excited buildings equipped with
a frictional-type sliding isolation system [Ref. 22]. However, for applications to other types
of nonlinear structures, the major difficulty is to find a suitable template system such that
the response of the nonlinear structure can be matched easily to that of the template system.
Because of such a difficulty, the application of the dynamic linearization method is limited

to a certain class of base-isolated buildings. The control law associated with the method of
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dynamic linearization is usually nonlinear [Ref. 22]. Other control methods have also been
proposed for structures equipped with frictional-type sliding isolation systems [e.g., 2, 5, 8].

The polynomial control law has been suggested in Refs. 11-12 for applications to
nonlinear structures. It was shown that the control performance of the nonlinear polynomial
control law is better than that of the linear control law. However, the main disadvantage of
the polynomial control law is that the computations of the gain matrices for higher order
control terms are rather cumbersome.

In this report, an optimal nonlinear control law is proposed for applications to
nonlinear and hysteretic structures. The proposed nonlinear control method is based on a
generalized performance index. The resulting optimal control law resembles the nonlinear
characteristics of the structure to be controlled. The absolute acceleration vector of the
structural response is included in the generalized performance index, and the actuator
dynamics is also taken into account in the optimization process. Likewise, control laws
using acceleration and velocity feedbacks are derived in Section 7.

An extensive simulation study has been conducted. Simulation results indicate that
(1) the proposed nonlinear control method is effective for hybrid control of some types of
seismic-excited building structures, and (ii) the performance of the optimal nonlinear control
method is better than that of the linear control method proposed in Refs. 18-21.
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SECTION 2
OPTIMAL LINEAR CONTROL FOR NONLINEAR STRUCTURES

An instantaneous optimal control method was proposed for nonlinear and hysteretic
structural systems [e.g., 18-21]. In the previous works, a discretization of the equations of
motion was made to obtain an approximate solution leading to a linear control law. Then,
the stability of the controllers is guaranteed by use of the Lyapunov direct method
[e.g., 20-21]. Using the Lyapunov direct method, a Riccati-type equation and a Lyapunov
equation were obtained for the determination of stable controllers. In this section, we shall
derive the same linear control law using the LQR performance index. The nonlinear control
law will be proposed in the next section.

Consider an n degrees of freedom nonlinear or hysteretic building structure subjected
to a one-dimensional earthquake ground acceleration }"(O(t). The vector equation of motion

is given by

MX() + E[X(D] + E[X(N] = £X,(2) + H U 2.1
in which X(t) =[x;,X,,...,X,]" = an n-vector with x (t) being the deformation of the jth story
unit, U(t) = a r-dimensional vector consisting of r control forces, £=-[m,;,m,,...,m ]’ = a
mass vector. In Eq. (2.1), M is a (nxn) mass matrix with the i-jth element M(i,j)=m; for
j<iand M(,j)=0 for j>1, where m, is the mass of the ith floor. Fp[X(t)] and F,[X(t)] are
nonlinear damping and stiffness vectors, respectively, and H; is a (nxr) matrix denoting the
location of r controllers. In the notation above, an under bar denotes either a vector or a
matrix and a prime indicates the transpose of either a matrix or a vector.

In the state vector form, Eq. (2.1) becomes

Z(r) = glZ(D] + BU() + W, %, () 2.2)
in which g[Z(t)] is a 2n vector which is a nonlinear function of the state vector Z(t) and
X 0 0 X
Zo)y=|~--13B=|"--|i® =|---|;glz®] =|---~-~--~- @-3)
X(#) M'H, M1E -M'(E, + E]
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The LQR performance index is given by

J = [Y[ZQz(t) + U(DRU®)]dr @.4)
in which Q is a (2nx2n) symmetric positive semidefinite weighting matrix and R is a (rxr)
positive definite weighting matrix.

To minimizing the objective function, J, given by Eq. (2.4) subjected to the constraint
of the state equation of motion, Eq. (2.2), the Hamiltonian H is constructed by introducing

a 2n-dimensional Lagrangian multiplier vector A(t),

H=27QzZ+ URU ~ g2+ BU ~ ¥ X, - 2] (2.5)
in which the argument t has been dropped for simplicity.

The necessary conditions for minimizing J given by Eq. (2.4) are

dH oH oH _ i/
— =0 3 — =0 ; = + =0, 2,
oA oU YA 4 @9

The first condition dH/dA =0 leads to the state equation of motion given by Eq. (2.2).

The second and third conditions are obtained as follows

U=-05R"'B'A Q2.7
and
20Z + A(Z)A + 4 =0 2.8)
in which
A(Z) = 0g(Z)[oZ 2.9)
is a (2nx2n) derivative matrix.
Let
A =PZ 2.10)

in which P is a (2nx2n) matrix to be determined. Substitution of Eq. (2.10) into Egs. (2.7)
and (2.8) yields

U(n = -05R'B'PZ 2.11)
2QZ + A(Z)YPZ + PZ + PZ =0 2.12)

Substituting Z given by Eq. (2.2) into Eq. (2.12), using Eq. (2.11) and neglecting the
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earthquake ground acceleration Xy(t), one obtains

PZ + A(Z)PZ + Pg(Z) - O.SPBR'B'PZ = -2QZ 2.13)
Equation (2.13) should be solved backwards from the terminal point t;, i.e., P(t))=0.
However, since the earthquake ground acceleration Xo(t) is not known, i.e., Z(t) is not
known, Eq. (2.13) can not be solved. Consequently, an approximation using the equivalent
linearization technique is used.
One possible approach is to linearize the structural system at the initial equilibrium
point Z=Q that is stable for civil engineering structures. Hence g(Z) and A(Z) are
approximated by

g(d) AOZ
A(Z) ~ AO
and Eq. (2.13) becomes
P+ AP+ PA -O0SPBR'B'P = -2Q (2.14)
in which P is the Riccati matrix where
A = AD) gy (2.15)

In earthquake engineering applications, it has been shown [e.g., 15, 16] that the time

dependent Riccati matrix establishes its stationary values rapidly such that P=0 is an

excellent approximation. As a result, Eq. (2.15) can be approximated by the matrix
algebraic equation

AlP + PA - O5PBR'B'P = -2Q 2.16)

Equation (2.16) was also derived based on the Lyapunov direct method for

instantaneous optimal control in Refs. 20-21, Furthermore, since the term P B R B'P is
positive semidefinite, Eq. (2.16) can also be approximated by

AP + PA, = -2Q 2.17)

which is known as the Lyapunov equation. From Eq. (2.17), various approximate solutions

have been proposed in Ref. 20 for control of linear, nonlinear and hysteretic structures.
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SECTION 3
OPTIMAL NONLINEAR CONTROL FOR NONLINEAR STRUCTURES

In the previous section, the LQR performance index is used and a linear control law
is derived for nonlinear structures where the derivative matrix A(Z) is evaluated at the initial
equilibrium point Z=0. The same solution was obtained in Ref. 20 using the Lyapunov
direct method. Such an approach works well when yielding of inelastic structures is not
quite serious. As the ductility becomes large, the control performance of the linear control
law presented in the previous section will be examined later. In this section, two nonlinear
control laws are proposed for control of nonlinear structures.

A performance index is proposed as follows

J = f;f[EI(Z)QE(Z) + _U’(I)R_L[(t)]d: 3.1)
The performance index J, proposed in Eq. (3.1), is quite different from that of LQR, Eg.

(2.4), since g(Z) is a nonlinear function of Z

=1

see Eq. (2.3), which is the nonlinear
characteristic of the hysteretic system.
To minimize the performance index J subjected to the constraint of the matrix

equation of motion, the Hamiltonian H is expressed as

H = g(2)Qg(2) + U(HRU() + A[g(2) + BU + W X,(1) - Z] 3.2)
The necessary conditions for the optimal solution are
a_}1=0 | a_I.I:O : E.I.’Z\»l’:O (3-3)
dA ou oz

The first condition above leads to the state equation of motion given by Eq. (2.2).
Substitution of Eq. (3.2) into the condition dH/dU =0, yields

U(t) = -05R'B'A 3.9
Substituting Eq. (3.2) into the third condition,
dH i
== & =0 3.
32 A (3.5)

one obtains
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20(2)Q8(Z) + A(DA +4 =0 3.6)
in which A(Z) is the derivative matrix
A(Z) = 9g(2)/3Z 3.7
The first nonlinear control law is obtained by setting
A = Pg(2) (3.8)
in which P is a (2nx2n) matrix to be determined. Substitution of Eq. (3.8) into Eq. (3.4)
leads to the following control law
U(t) = ~05R'B'Pg(2) (3.9)
Substituting Eq. (3.8) into Eq. (3.6), using the matrix equation of motion for Z(t) and
neglecting the external load X,(t), one obtains
B + A(Z)P + PA(Z) - 0.5PA(Z)BRB'P = -24/(2)Q 3.10)

Again, an equivalent linearization technique is used for the determination of the P matrix.

The nonlinear structure is linearized at the initial equilibrium point Z=0 that is stable, i.e.,

A(Z) = A(Z) |59 = A (3.11)
and the transient part of the P matrix is neglected, i.e., P=0. Then, Eq. (3.10) becomes
AP + PA -OSPA BR'BP = -24/Q (3.12)

To facilitate the solution of the constant matrix P, the following transformation is
made,

P=AP (3.13)
in which P, is a (2nx2n) constant matrix to be determined. Substituting Eq. (3.13) into Eq.
(3.12) and premultiplying the resulting equation by (A4')}, one obtains

AP +BA - O05PABR'BAPR =-2Q (3.14)
Equation (3.14) is the matrix Riccati equation from which the Riccati matrix, P,, can be

determined.

Thus, the control vector given by Eq. (3.9) becomes
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Uy = - O-SR'IE’A(QEI&(Z) (3.15)
in which P, is the (2nx2n) Riccati matrix to be computed from Eq. (3.14).
The nonlinear control law derived above, Eqs. (3.14) and (3.15), is referred to as the

first nonlinear control law. The second nonlinear control law is obtained by setting

A =AN(2)Pg(2) 3.16)
Substitution of Eq. (3.16) into Eq. (3.4) leads to the control vector U(t) as follows
U(t) = -05R'B'A(Z)Pg(2) (3.17

The condition for determining the P matrix is obtained by substituting Eq. (3.16) into Eq.
(3.6), using the matrix equation of motion, Eq. (2.2), for Z(t) and neglecting Xo(t); with the

result,

AP + ADP + AZ)P + PA(Z) -05PA(Z)BRB'A(D)P + 2Q] = 0 3:18)
Again, an equivalent linearization at the initial equilibrium point Z=0, Eq. (3.11), is used
such that A;=0, and the transient part of the P matrix is neglected, i.e., P=0. Then Eq.
(3.18) becomes
AP - PA -O5PA BR'BAP = -2Q 3.19)
which is exactly the matrix Riccati equation. It can easily be observed that P, in Eq. (3.14)
is identical to P in Eq. (3.19). Thus, the first nonlinear control law, Eq. (3.15), is a special
case of the second nonlinear control law, Eq. (3.17), in which A'(Z) is replaced by the
constant matrix A,.
It should be mentioned that the control laws proposed in Egs. {(3.15) and (3.17) are

nonlinear, because g(Z) is a nonlinear function of the state vector Z given by Eq. (2.3).
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SECTION 4
GENERALIZED NONLINEAR CONTROL

In order to protect the equipments housed in the building, the absolute acceleration
of the floor response must be reduced to an acceptable level. This can be accomplished by
including the acceleration response in the performance index. A generalized performance
index is proposed in the following

J = [Ve s + X (0Q,Z (1) + UHRU®)|de @.1
in which Q, is an (nxn) symmetric positive semidefinite weighting matrix and X (t) is the
absolute acceleration vector for all floors. It follows from the matrix equation of motion,

Eq. (2.1), that the absolute acceleration, &(t), can be expressed as

X,(0 = -M'[E,(X) + E(X)] + M;'HU()
-LME (X) ~ E(X)] ~ LM HU(?)

4.2)

in which M, is a diagonal mass matrix with m; being the ith diagonal element, and

L= M;lM 4.3)
is an (nxn) transformation matrix with L(i,j)=1 for j<i and L(i,j)=0 for j > 1.

Substituting Eq. (4.2) into Eq. (4.1) and rearranging, one obtains

e £(2)
1= [e@.um |5l e @4

in which T is a (2n+1) x (2n+r) generalized weighting matrix

I11 IIZ
L, L

In Eq. (4.5), T,, is a (2nx2n) matrix, T, is a (2nxr) matrix and T, is a (rxr) matrix given

T = 4.5)

in the following
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0. 9. 0
T, =Q+|----- b Ty = |
: 0, | ° IaM‘H} @6

L,=R+ (M“IH)’Ia(M_lH)

where T, is a (nxn) transformed matrix of Q,, i.e.,
T = L’QGL 4.7
To minimize the performance index given by Eq. (4.4), the Hamiltonian H is formed

as follows
H=[£”M]I[§]+A’[g+BQ+H£1X'0—Z] 4.8)

in which the arguments Z and t have been dropped for simplicity.

The necessary conditions for the optimal solution are

oH oH oH : /
9B _o , 2H _4, , 2K -0 4.9
A au oz & @9

The first condition dH/d) leads to the state equation of motion given by Eq. (2.2).
Substitution of Eq. (4.8) into the second and third conditions of Eq. (4.9) leads to the

following relations

U = —0.51'2-21[5’; + 21‘123(1)] 4.10)
2A’(Z)I“£(Z) + 2A’(Z)1'12H(t) + AL +A=0 4.11)

in which
A(2) = 9g(2)/3Z (4.12)

is the system derivative matrix identical to Eq. (3.7).
Let

A= A(Z)Pg(2) 4.13)
Substituting Eq. (4.13) into Eqgs. (4.10) and (4.11), one obtains
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U = -05I BN DP + 2T ,18(2) 4.14)

AN(DPg(Z) + N(DIP + N(Z)E + PAZ) - 05PAZ)BL B'A(D)P
+ 2L, - I,I,"T,)]e(Z) =0 (4.15)

in which
A(Z) = ADU - BT,'T,)] (4.16)
At this point it is necessary to linearize the system in order to obtain a constant P
matrix. Again, we linearize A(Z) at the initial equilibrium point Z(t)=0 such that
A(Z) = A, and A(2) = 0 4.17
and neglect the transient part P. Then, Eq. (4.15) becomes
! " Lpialp = - - -1y / .
AP +~ PA, - O05SPA BT, B AP =-2T, -TI,T, Y (4.18)
in which A, follows from Egs. (4.16) and (4.17) as
Eo = AL - grn-irxzf] 4.19)
Equation (4.18) is the matrix Riccati equation from which the constant Riccati matrix P can
be determined.
The control law presented in Eqgs. (4.14) and (4.19) corresponds to the second
nonlinear control law presented in the previous section. It can be shown easily that T,=0

and T;,=0 for Q,=0. Then, Egs. (4.14) and (4.19) reduce to Egs. (3.17) and (3.19),
respectively. Furthermore, if A(Z) appearing in Eq. (4.14) is linearized by A,, one obtains

~0

U = -0.5T,'[B'AJP + 2T, "1e(2) (4.20)

which is the first nonlinear control law.
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SECTION §
GENERALIZED NONLINEAR CONTROL INCLUDING
ACTUATOR DYNAMICS

In this section, the actuator dynamics will be taken into account in the derivation of
the generalized nonlinear control law. For simplicity, the dynamic equations for r actuators

are described by a system of first order differential equations [23]

U + al(n) = be() 5.1
in which a and b are (rxr) diagonal matrices with diagonal elements a and b; (i=1,2,...,1).
3, is a measure of the loop gain or the reaction time of the ith actuator, and b; is a measure
of feedback gain or the amplification factor of the ith actuator. In Eq. (5.1), q(t) is a r-
vector representing the feedback signal (or dynamic input) for generating the required active
control vector U(t). Note that the vector g(t) is proportional to the control vector U(t) and
it will be determined later through the optimization process. It should be mentioned that the
extension of the optimal control theory in the following is not restricted to the first order
differential equation, Eq. (5.1), for the actuator dynamics. Other higher order differential
equations can similarly be used.

The dynamic equations of actuators, Eq. (5.1), can be augmented to the state equation
of motion, Eq. (2.2), and both can be casted into the following (2n+r1) vector equation

Z (1) = Sh@Z) + Bg(r) + WX, () (5.2)
in which

10 22 LB

Z() == - - hEZ) =| - - - |;8 =] | ===

1 v || e 0 | -a

rin
)i 4

§=_Q’:"_ |- - - (5.3)

where 0o, and Q; are (2nxr) and (rx1) zero matrices, respectively.

The generalized performance index J can be expressed as
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J - [7g(@)Qe(2) + UMRUM+ X (0Q,X (1) + d()Re(t)|&r 54
in which Q, is a (nxn) symmetric positive semidefinite weighting matrix, R is a (rxr)
symmetric positive definite weighting matrix, and Q and R have been defined previously.

In Eq. (5.4), X, (1) is the absolute acceleration vector given by Fq. (4.2)
X, = -LM'[E (D + F(0] + LMTHU® (5.5)
Substituting Egs. (5.5) into Eq. (5.4), one obtains the following equivalent generalized
performance index
7= [1H(Z)Th(Z) + ¢ () Rq()]dr 5.6)
in which the T matrix is defined in Eqgs. (4.5) 10 (4.7).

Following the same optimization procedures described in the previous sections, the

optimal solution is obtained as

g = 058" B'A/(Z) BhZ) 5.7
in which A(Z,) is the derivative matrix of h(Z,) with respect to Z,,
. MK(Z,)
= (5.8
Aiz) Z

The condition for determining the P matrix is as follows
K@)p ~ K@)ip + $AZ)E + PAZ)S
- 05PAZ)BR'BA@)P + 211 = 0 (5.9

Agam an equivalent linearization at the initial equilibrium point Z,=0 is used such that
=0, and the transient part of the P matrix is neglected, i.e E=Q. Then Eq. (5.9)

becomes
(A,SYB + B(AS) -05PABR'B' AP = -2T (5.10)
which is exactly the matrix Riccati equation and
A =A@z g (5.11)

Equation (5.7) is the second optimal nonlinear control law. The first optimal nonlinear

control law is identical to Eq. (5.7) except that A/(Z,) is replaced by A,/

1I-13



SECTION 6
SIMULATION OF STRUCTURAL RESPONSE

In order to evaluate the effectiveness and performance of the proposed optimal
nonlinear control method, it is necessary to simulate the response of the controlled structure.
A method of simulation for hysteretic structures is presented in the following. For simplicity,
the damping of the structure is considered as linear viscous damping, i.e., Fp[X(]=C X,
where C is the damping matrix.

The following hysteretic model will be used for both the structures and passive

protective systems. The stiffness restoring force, F (1), of the ith story unit is given by

F () = a,kx, + (1-a) kD v, 6.1)

yii
in which k; = elastic stiffness of the ith story unit, o, = ratio of the post-yielding to pre-
yielding stiffness, Dy; = yield deformation = constant, and v; is a nondimensional variable

introduced to describe the hysteretic component of the deformation, with |v;| < 1, where
. -1 , . -1 , ,
V; = Dy [A % = B,1%1 vy, - v, %™ = fi(%,v) (6:2)
In Eq. (6.2), parameters A, 8; and v, govern the scale and general shape of the hysteresis

loop, whereas the smoothness of the force-deformation curve is determined by the parameter

n;.
The state equation of the motion, Eq. (2.1), can be expressed as
MX® + CX0) + K, X + K V©) = EX,0 + H U® (6.3)
in which V()=[v,(t), vo(t), ..., v4()} = an n vector denoting the hysteretic component v;

of each story unit given by Eq. (6.2). In Eq. (6.3), C, K, and K, are (nxn) band-limited
damping matrix, elastic stiffness matrix and hysteretic stiffness matrix, respectively. All
elements of C, K, and K are zero, except C(i,i)=c;, K.(i,i) = aky, Ki(1,1)=(1-a)kD,,; for
i=1,2,...,n and C(i,i+1)=-¢;,, K (,i+1)=-a;, ki, [, ki(i,i+1)=-(1-a 4 k4 Dy, for
i=1,2,...,n-1, where ¢; is the damping coefficient of the ith story unit. The expressions given
above for matrices C, K, and K; hold for a base-isolated building connected to an actuator
at the base isolation system, Fig. 7-1(a). When the arrangement of the control system is

different, the marrices C, K, and X; should be modified appropriately.
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By introducing a 3n state vector Z(t), a (3nxr) matrix B and a 3n vector W,

X 0 0
Zmy=1¥Y| ; B=) Q ; W= 0 (6.4)
X M'H M'E

the second-order nonlinear vector equation of motion, Eq. (6.3), can be converted into a first

order vector equation as follows

Z(n) = §12(0] + BU() + B X (1) (6.5)
in which E[Z(t)] is a 3n vector consisting of nonlinear functions of components of Z(t),
[ X ’
ElZ(n] = | L&D (6.6)

MCE KX+ KV)

where f(X,V) =[fi(X;,v}), f2(X3,¥2),...,f,(%,,v,)]' = an n vector with the ith element, fi(x,,v;),
given by Eq. (6.2).
The vector equation of motion given in Eq. (6.5) can be augmented by the actuator

dynamics, Eq. (5.1), as follows

2,1 = SK@Z) + B'g() + WX,(1) 6.7
in which Z,(t), h(Z,) and W* are (3n+1) vectors, S is a (3n+r)x(3n+r1) matrix and B* is a
(3n+1)x(r) matrix,

. ] o] 4B
) =l---1 k&)= ---|;8= |-~ ] -—--
Ut Ut
() ® o, | -a
0 ¥,
B ' =|---1;/ =|--_ (6.8)
b 0

With the optimal nonlinear control law, g(t), derived in Eq. (5.7), the response for
the hysteretic structural system can be simulated by solving Eq. (6.7) numerically using the
Fourth-Order Runge-Kutta method [ e.g., 18-21].
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The derivative matrix A(Z,) appearing in the control law, Eq. (5.7), is given by

AD | O,

A@) =|---- 1 - (6.9)
0, | I

r2n Lca

in which I, = a (rxr) identity matrix and

0, L,
AMD =| T | —mmmmmm (6.10)
ay
-MK + K— -M'C
MUK, Kyl | |
where dV/dX is a diagonal matrix with the i diagonal element dv;/dx; given as follows
av af(x,v,) . }
i s T 1 . n-1 n
— = T =D [A-BsgnGEY v, v -y, v ] (6.11)
A . i i
axi axi { i 1 i i

A

The constant derivative matrix A, is given also by Eq. (6.9) except that A(Z) is replaced by

A, where

0 | {
A =|--—-- 1 ---- (6.12)

0
-M'K | -M'C
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SECTION 7
OPTIMAL CONTROL USING ACCELERATION AND VELOCITY FEEDBACKS

Both linear and nonlinear control laws presented previously require the feedback of
the state vector Z(t) that should be either measured or estimated using an observer.
Frequently, it may be easier to measure the acceleration response than the displacement
response [e.g., 20, 21]. Control laws using the acceleration and velocity feedbacks were
suggested in Refs. 20 and 21. These control laws will be derived in this section using the
LQR type formulation.

Consider the following LQR type performance index

J = [NZW0Q Ly + U(ORUMNdt (7.1)
in which Z(t) is the time derivative of the state vector, which consists of the velocity and
acceleration responses. To minimize the objective function J subjected to the constraint of

the state equation of motion, Eq. (2.2), the Hamiltonian H is introduced
H=Z®QzZ(m + URUGQ) + Alg(Z2) + BU(r) + Ii’lfo(t) - 21 7.2
The necessary conditions for the optimal solution are

OH .o , 9H _ , 3H dJoH _, 7.3)
0Z dt| 57

in which the general form has been used for the third condition. Substitution of Eq. (7.2)

3r aU ’ dt| 57

into the last two conditions yields

Ut) = -05R'B'A (7.4
A(ZD)A +2QZ(t) +A =0 (7.5)
in which A(Z) is the derivative matrix
9g(Z)
5 = (7.6)
3z A(2)

At this point, we shall linearize the equation of motion at the initial equilibrium point Z=0,
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such that

AZ) = A(D) [z = 4,
g(Z) = A2

7.7
A = -(A;'YEZ (7.8)
in which P is a constant matrix to be determined. Substituting Eq. (7.8) into Eqs. (7.4) and

(7.5) and neglecting the external excitation, one obtains

U = 05R'B'(A;'YPZ (7.9)

-PZ +2Q'Z - (A;l)’P_Z =0 (7.10)
Substituting Eq. (7.9) into the linearized state equation of motion, taking the time
derivative of the resulting equation, and substituting the resulting equation into Eq. (7.10),

one obtains the following matrix Riccati equation for the determination of the P matrix,

PA" + (A"YP - O5SPB'R'(BYP +2Q"' =0 (7.12)
in which
A*=A'; B =AB (7.13)
If the equation of motion is linear, i.e.,
g(2) =4Z; A =4 (7.19)

then, the control law given by Eqs. (7.9) and (7.12) is the exact optimal control which was
presented in Ref. 20, However, if the equation of motion is nonlinear, the control law given

by Egs. (7.9) and (7.12) is an approximation which was proposed in Ref. 21.
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SECTION 8
NUMERICAL SIMULATION

To demonstrate the performance of the proposed nonlinear control method and to
compare it with that of the linear control method, numerical examples are worked out in this
section. Two cases are considered in the following; namely, a moderate earthquake (0.3g)
and a strong earthquake (1g).

Example 1: A Base-Isolated Elasto-Plastic Building

An eight-story building that exhibits bilinear elasto-plastic behavior is considered,
Fig. 7.1 [e.g., 18-20 ). The properties of the building are as follows : (i) the mass of each
floor is identical with m; = m=345.6 metric tons; (ii) the preyielding stiffnesses of the
eight-story units are k;, (i=1,2,...,8)=3.4x10°, 3.26x10°, 2.85x10°, 2.69x10°, 2.43x10%,
2.07x10°, 1.69x10° and 1.37x10° kN/m, respectively, and the postyielding stiffnesses are
kp,=0.1 k,; for i=1,2,...,8, 1.e., o;=0.1 and k=k;; and (iii) the viscous damping
coefficients for each story unit are ¢;=490, 467, 410, 386, 348, 298, 243 and 196 kN.sec/m,
respectively. The damping coefficients given above result in a damping ratio of 0.38% for
the first vibrational model. The fundamental frequency of the unyielded building is 5.24
rad./sec. The yielding level for each story unit varies with respect to the stiffness; with the
results, D,;=2.4, 2.3, 2.2, 2.1, 2.0, 1.9, 1.7, and 1.5 cm. The bilinear elasto-plastic
behavior can be described by the hysteretic model, Eqs. (6.1) and (6.2), with A =1.0,
8;=0.5, n;=95 and v;=0.5 for i=1,2,...,8 [Ref. 18]. The same El Centro earthquake with
a maximum ground acceleration of 0.3g as shown in Fig. 6.2 of Part I is used as the input
excitation,

Time histories of all the response quantities have been computed. Within 30 seconds
of the earthquake episode, the maximum interstory deformation, X;, and the maximum
absolute acceleration of each floor, X,;, are shown in columns (3) and (4) of Table 7.1,
designated as "No Control". As observed from Table 7.1 , the deformation of the
unprotected building is excessive and that yielding takes place in the upper five story units.

To reduce the structural response, a lead-core rubber-bearing isolation system is
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implemented as shown in Fig. 7.1(a). The restoring force of the lead-core rubber-bearing
isolation system is modeled by Eq. (6.1) with Fg=oykyx, + (1-0,)k Dy, vy, in which vy, is
given by Eq. (6.2) with 1 = b. The mass of the base isolation system is m,=450 metric
tons and the viscous damping coefficient is assumed to be linear with ¢, =26.17 kN sec/m.
The restoring force of the base isolation system given above is not bilinear elasto-plastic and
the parameter values are given as follows: k,=18050 kN/m, o, =0.6, Dy, =4cm, A,=1.0,
B,=0.5, n,=3 and v, =0.5, Eq. (6.2). The hysteresis loop of such a base isolation system,
i.e., x, versus vy, is shown in Fig. 7.2. For the building with the base isolation system
alone, the first natural frequency of the preyielded structure is 2,21 rad/sec and the damping
ratio for the first vibrational mode is 0.15%. The response vector X(t) is given by
X=[xy,X[,...,Xg) .

The maximum response quantities of the building within 30 seconds of the earthquake
episode are shown in columns (5) and (6) of Table 7.1 designated as "With BIS". As
observed from Table 7.1, the interstory deformation and the floor acceleration are drastically
reduced. However, the deformation of the base isolation system shown in row B of Table
7.1 should be reduced.

Since the effect of actuator dynamics has been demonstrated in Part I, it is not
necessary to present similar results. It is mentioned that the degradation of the control
performance due to the actuator response is minimal as long as the actuator dynamics is
taken into account. In what follows, we shall assume that the time delay due to the actuator
response is negligible, i.e., «=g is a large value, so that q()=1J(t).

To protect the safety and integrity of the base isolation system, an actuator is
connected to the base isolation system as shown in Fig, 7.1(a). With the actuator applying
the active control force U(t) to the base isolation system, the structural response depends on
the weighting matrices Q, Q, and R where R=0. For this example, the weighting matrix
R consists of only one element, denote by R,

We first consider the linear control law given by Eqgs.(2.11) and (2.16). The (18x18)
Q matrix is considered a diagonal matrix with all the diagonal elements equal to 1.0, i.e.,
Q@4,i)y=1 for i=1, 2, ...,18, and R0=10‘7 is used. Time histories of all the response

quantities have been computed. Within 30 seconds of the earthquake episode, the maximum
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response quantities and the required maximum control force, U, are shown in columns (7)
and (8) of Table 7.1. As observed from the table, the deformation of the base isolation
system is reduced by 50%, where the response quantities of the superstructure reduce slightly
except that of the top story unit.

The first nonlinear control law presented in Eq.(4.20) is considered in which the
Riccati matrix P is computed from Eq.{4.18). In this case, the (18x18) diagonal Q matrix
is assigned as follows : Q(i,1))=2 for i=1,2,...,9 and Q(i,1)=0 for i=10, 11, ..., 16. The
(9x9) Q, matrix that corresponds to the acceleration response is considered a diagonal matrix
with all the diagonal elements equal to 1.0, i.e., Q,(i,i)=1 for i=1,2,...,9, and Ry=2x10"
is used. The maximum response quantities and the required maximum control force are
presented in columns (9) and (10) of Table 7.1, designated as "Nonlinear Control I". It is
observed that all the response quantities and the active control force are smaller than those
associated with optimal linear control, columns (7) and (8). In particular, the acceleration
response quantities improve significantly because of the use of the generalized performance
index.

We next consider the second nonlinear control law in Eq. (4.14) and use the same
matrices Q, Q, and R in the first nonlinear control law. The corresponding results are
shown in columns (11) and (12) of Table 7.1, designated as "Nonlinear Control 1I’. It is
observed from the table that all the response quantities and the required active control force
are slightly smaller than those associated with the first nonlinear control law, columns (9)
and (10). As aresult, the performance of the second nonlinear control law is slightly better.
It should be mentioned that for the second nonlinear control law the system derivative
matrix, A(Z), is not linearized, Hence, the system derivative matrix A(Z) should be
computed on-line, resulting in an increase of the on-line computational efforts.

Suppose the same base-isolated building used above is subjected to the El Centro
earthquake shown in Fig. 6.2 of Part 1 but scaled uniformly to a maximum ground
acceleration 1g. With such a strong earthquake input, the maximum response quantities of
the building with and without a base isolation system are presented in columns (3)-(6) of
Table 7.2, designated as "No Control" and "With BIS", respectively. It is observed that (i)

Without a base isolation system, the ductility of the building response is quite high, and (ii)
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With a base isolation system the response of the rubber bearing is too large, whereas the
response quantities of all the story units are close to the yield limit D,.

With the same active control devices and the same weighting matrices, Q, Q, and R
used previously, the maximum response quantities for the corresponding control methods are
presented in Table 7.2. The same conclusions described previously are obtained from
Table 7.2: (i) the control performance of the two nonlinear control methods is better than
that of the linear control method, and (ii) the control performance of the second nonlinear

control method is slightly better than that of the first one.

Example 2: An Elasto-Plastic Building With Active Bracing Systems

The same eight-story elasto-plastic building considered in Example 1 is subjected to
the same El Centro earthquake with a maximum ground acceleration of 1g. However,
instead of using a rubber-bearing isolation system, an active bracing system is installed on
every floor. The angle of inclination of the bracings with respect to the floor is 25°.
Hence, the dimensions of the weighting matrices Q, Q, and R are (16x16), (8x8) and (8x8),
respectively. These weighting matrices will be assigned as diagonal matrices in the
following. Also, the time delay due to the actuator response is assumed to be negligible,
1.e., =8 = a large value.

For the linear control law given by Egs. (2.11) and (2.16), Q(i,i)=1 fori=1,2,...,16
and R(i,))=107 for i=1,2,...,8 are used. For nonlinear control laws, we choose
Q(1,1)=4000, Q(i,i)=1000 for i=2,3,...,8, Q(i,i)=0 for i=9,10,...,16, and Q,(i,i)=1,
R(.i)=1038 fori=1,2,...,8.

Within 30 seconds of the earthquake episode, the maximum response quantities are
presented in Table 7.3, including the maximum interstory deformation, x;, the maximum
absolute acceleration, %,;, and the maximum control force U,. It is observed from Table 7.3
that the control performance of all control laws is quite satisfactory. Further, the second
nonlinear control law seems to perform slightly better than the first one.

The results shown in Table 7.3 indicate that yielding still occurs in some story units.
To bring the response of each story unit into the elastic range, larger contro} forces are

needed. For the linear control law, the Q matrix remains the same but each diagonal
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element of the R matrix is changed to 1071%, For the nonlinear control laws, the Q, and R
matrices remain the same, but Q(1,1)=4000, Q(,i)=1000 for i=2,3,...,8 and Q(i,i)=0 for
i=9,10,...,16 are used. The corresponding maximum response quantities are presented in
Table 7.4. Again, the control performance of all the control laws is very satisfactory.
When all the response quantities are within the linear elastic range, there is no difference
between the first and the second nonlinear control laws as evidenced by the results shown
in Table 7.4.

Finally, we would like to point out that control of hysteretic buildings, in which a
large ductility is involved, requires more controllers. For a perfectly linear elastic building,
either an active mass damper installed on the top floor or an active bracing system (ABS)
installed on the first floor is enough to control the entire building. However, for the elasto-
plastic eight-story building subjected to a 1g earthquake considered in this example, either
an active mass damper or an active bracing system alone is not capable of controlling the
building response. The reason is that once a story unit yields with a large ductility,
controllers installed in the other story unit cannot effectively exert the control force through

the given load path. As a result, eight controllers are used in this example.
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SECTION 9
CONCLUSIONS

An optimal nonlinear control method is proposed for applications to seismic-excited
nonlinear or hysteretic building structures. Emphasis is placed on hybrid control of base-
isolated hysteretic buildings. Both the absolute acceleration response of the building and the
actuator dynamics have been accounted for in the optimization process. Control laws using
acceleration and velocity feedbacks are also derived. Simulation results indicate that (i) the
proposed nonlinear control method is effective for hybrid control of seismic-excited buildings
isolated by rubber-bearing isolators, and (ii) the performance of the proposed nonlinear

control method is better than that of the linear control method proposed previously.
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