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PREFACE

The National Center for Earthquake Engineering Research (NCEER) was established to expand
and disseminate knowledge about earthquakes, improve earthquake-resistant design, and imple-
ment seismic hazard mitigation procedures to minimize loss of lives and property. The emphasis
is on structures in the eastern and central United States and lifelines throughout the country that
are found in zones of low, moderate, and high seismicity.

NCEER’s research and implementation plan in years six through ten (1991-1996) comprises four
interlocked elerments, as shown in the figure below. Element I, Basic Research, is carried out to
support projects in the Applied Research area. Element II, Applied Research, is the major focus
of work for vears six through ten. Element III, Demonstration Projects, have been planned to
support Applied Research projects, and will be either case studies or regional studies. Element
IV, Implementation, will result from activity in the four Applied Research projects, and from
Demonstration Projects.
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Research tasks in the Nonstructural Components Project focus on analytical and experimental
investigations of seismic behavior of secondary systems, investigating hazard mitigation through
optimization and protection, and developing rational criteria and procedures for seismic design
and performance evaluation. Specifically, tasks are being performed to: (1) provide a risk analy-
sis of a selected group of nonstructural elements; (2) improve simplified analysis so that research
results can be readily used by practicing engineers; (3) protect sensitive equipment and critical



subsystems using passive, active or hybrid systems; and (4) develop design and performance
evaluation guidelines.

The end product of the Nonstructural Components Project will be a set of simple guidelines
for design, performance evaluation, support design, and protection and mitigation measures in
the form of handbooks or computer codes, and software and hardware associated with innovative
protection technology.

The protective and intelligent systems program constitutes one of the important areas of
research in the Nonstructural Components Project. Current tasks include the following:

1. Evaluate the performance of full-scale active bracing and active mass dampers already in
place in terms of performance, power requirements, maintenance, reliability and cost.

2. Compare passive and active control strategies in terms of structural type, degree of
effectiveness, cost and long-term reliability.

3. Perform fundamental studies of hybrid control.

4. Develop and test hybrid control systems.

One of the passive protective systems considered in this program is the wire rope system, which
has found wide applications in shock and vibration isolation of equipment. In this report, appli-
cations of this type of energy dissipation system to seismic isolation of a selected class of equip-
ment are investigated. Both analytical and experimental work has been carried out, and the
results show that stiff wire rope systems may provide some degree of protection of equipment in
buildings while allowing very small displacements.



ABSTRACT

Wire rope isolators have found numerous applications in
the shock and vibration isclation of military hardware and
industrial machinery. In this study, the usefulness of these
devices for the seismic protection of equipment in buildings
is investigated. Installation methods of entirely supporting
equipment on wire rope isolators and of combining them with
locked casters are experimentally and analytically studied. It
is found that the use of wire rope isolators in stiff
configurations may substantially improve the seismic response
of equipment in comparison to other installation methods.

Mathematical models for describing the hysteretic
behavioer of wire rope 1isolators are developed and
experimentally calibrated and verified. Analytical predictions
of seismic response are shown to be in good accord with

experimental results.
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S8ECTION 1

INTRODUCTION

Seismic base isolation is a design technique that is
becoming widely accepted and is being studied with continually
increasing interest. The principle of seismic isolation is to
introduce an interface at the base of a structure that can
attenuate the magnitude of the horizontal movement of the
ground transmitted to the structure during an earthquake. This
results in a significant reduction in floor accelerations,
story shears and interstory drifts, thus providing protection
to the structure itself as well as to all items and equipment
mounted on the structure (Kelly 1982, 1985, 1988; Zayas 1987;
Chalhoub 1988, 19%0; Tsai 1989; Buckle 1990; Mokha 1990, 1991;
Constantinou 1990b, 1991; Manolis 1990; Juhn 1992).

The reduction of the seismic forces imparted to the
structural system is achieved by introducing flexibility and
energy absorption capability in the isolation system. The
introduction of flexibility increases the fundamental period
of the isclated structure to values well above the pfedominant
period of the earthquake excitation so that the isolation
effect is primarily produced by deflection of the earthquake
energy (Kelly 1991). This desirable effect is, however,
produced at the expense of large isolation system
displacements which are in the range of 8 to 20 in. (200 to

500 mm) for strong earthquake excitation. While the
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displacements appear to be large, they are in reality small in
comparison to the building dimensions and can be accommodated
by the isolation system without, usually, instability
problems.

The same principle may be used to isolate and
directly protect sensitive equipment housed mainly in
conventionally constructed buildings where the high floor
accelerations during an earthguake can be catastrophical for
them.

However, earthquake motions, when transmitted
through conventionally constructed buildings, which in strong
excitation respond inelastically, reach the upper floors
amplified and with their frequency content spread over a wide
range of frequencies (Singh 1988; Lin 1985; Chen 1988).
Iscolation in this case becomes difficult. To achieve effective
isclation, it is necessary to increase the period of the
isolated equipment to large values which typically are larger
than those required for effective isolation of buildings. This
results in displacements which are unacceptably large for
single equipment. Furthermore, the construction of very
flexible isolation systems for single equipment is impractical
because such systems are usually not capable of carring the
weight of the supported equipment.

To counteract these problems, the Japanese
construction industry developed elaborate isolation systems

for computer floors which support a large number of equipment
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(Fujita 1991). These systems utilize either low friction
sliding bearings, or multi~stage rubber bearings, or pneumatic
isolators.

The seismic protection of single equipment may be
also achieved not by 1lengthening their peried and thus
deflecting the earthquake energy but by absorbing earthquake
energy through a stiff and highly energy-dissipative system.
Such a system may provide a degree of protectioen while
allowing relatively small displacements. Makris 199%92a and
1992b reported experimental results on a system consisting of
helical steel springs immersed in highly viscous fluid for
seismic protection of equipment. The system was used to
support a slender equipment cabinet which was subjected to
strong floor seismic motions. The system, which resulted in a
frequency of 3.5 Hz in the isoclated equipment, was capable of
reducing accelerations by a factor of 2 in comparison to the
non - isolated equipment, while allowing displacements at the
isclation level which did not exceed 0.4 in. (10 mm). This
spring - viscous damper system evolved from a widely used
vibration isolation system.

Herein another system which is widely used in shock
and vibration isolation of equipment is investigated for use
as a seismic isolation system. Wire rope isolators are
mounting assemblies made of stranded wire rope which is wound
in the form of ; helix and held between metal retainers (Fig.

1-1a). In a further development, arch wire rope isolators are
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formed by two groups of oppositely inclined, arch-like, open -
bottom wire rope elements which are clamped between retainer
bars (Fig. 1-1b).

Both helical and arch wire rope isolators consist of
twisted stainless steel cable. They have flexibility in all
three directions, large displacement capacity and inherent
damping which results from rubbing and sliding friction
between the intertwined cables. Their ability to absorb energy
is simultaneous in all three directions. These isolators have
found numerous applications in the shock and vibration
isolation of industrial and defense equipment, electronic
systems, critical machinery and other sensitive egquipment.

In applications of shock and vibration isolation,
wire rope isolators support the weight of the isolated system.
Typically, the isolated system has fundamental frequency of
the order of 10 Hz. Their energy dissipation capacity is, in
terms of equivalent viscous damping ratio, about 0.1 to 0.2 of
critical under small amplitude motion. The aforementioned
frequency of about 10 Hz is that of a vertical or a horizontal
mede of vibration since, typically, equipment are either
squatty or are prevented from undergoing rocking motion. This
is accomplished by attaching the equipment to a wall by wire
rope isolators.

This study investigates the use of wire rope
isolators as a means of providing seismic protection to single

slender equipment which are only attached to vibrating floors.
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First, helical and arch type wire rope isclators were used to
support a slender equipment cabinet in four different
configurations. The isolators provided a fundamental frequency
(in the rocking mode) in the range of 1 to about 6 Hz in the
four systems. Second, helical wire rope isclators were used to
provide only restoring force in a computer equipment supported
by locked casters. The fundamental frequency in this case was
about 3.4 Hz. The isolated equipment were subjected on a shake
table to floor excitation which was determined by filtering
recorded earthquake motions through an actual 7-story
building. Experimental results were also obtained for the
equipment being either fixed to the floor or connected to the
floor by other commonly used means. It was found that for
certain configurations of wire rope isclators, it was possible
to achieve substantial reduction of the acceleration
transmission to the isolated equipment in comparison to other
conventional means of support of the equipment. The results of
this study are reported herein. Furthermore, analytical models
describing the dynamic behavior of wire rope isolators are
developed, calibrated and presented. The models are capable of
describing,with good accuracy, the observed dynamic response

of the tested equipment.



