Forecast of Pacific-Indian Ocean SSTs Using
Linear Inverse Modeling

contributed by Cecile Penland', Kiaus Weickmanr? and Catherine Smith’

'CIRES, University of Colorado, Boulder, Colorado
*Climate Diagnostics Center (CDC), ERLINOAA, Boulder, Colorado

Using the methods described in Penland and
Magonan (1993) and 11 previous 1ssues of this Bulletin
{particularly the December 1992 and June 1993 1ssues),
the sea surface emperature (SST) anomaly in the Nifio 3
region {6°N-6°5, 90°-150°W), as well as the anomaly in
the Nifo 4 region (6°N-6°S, 150° W-160° E), are
predicted. A predichon at lead time ¢ 15 made by applying
a statistically-obtained Green functon G{f) to an
observed imitial condition consisting of SST anomalies
(SSTAs) in the IndoPacific basin. Three-month running
means of the temperature anomalies are used, the
seasonal cycle has been removed, and the data have been
projected onto the 20 leading empirical orthogonal
functions (EQOFs) explaining 73% of the variance. The
Nifio 3 region has an RMS temperature anomaly of about
0.7°C; the mverse modeling prediction method has an
RMS error of about 0.5°C at a lead time of nine months
and approaches the RMS value at lead times of 18
months to two years. The COADS 1950-79
climatological annual cycle has been removed.

The predicted IndoPacific SSTA patterns based on
the Dec-Jan-Feb 1995-96 initial condition for the
followmg Mar-Apr-May, Jun-Jul-Aug, and Sep-Oct-Nov
1996, and Dec-Jan-Feb 1996-97, are shown in Fig. 1
{contour mterval is 0.2°C). Figure 2a shows the
predictions (light solid lines) and verifications (heavy
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solid lines) of the Nifio 3 anomaly for initial conditions
Sep-Oct-Nov and Oct-Nov-Dec 1995, and Nov-Dec-Jan
and Dec-Jan-Feb 1995-96. The 1-standard deviation
expected error for the prediction based on the Sep-Oct-
Nov 1995 initial condition is denoted by dashed lines.
Figure 2b is the same, but for the Nifio 4 region.
Verification and prediction do not exactly coincide at
zero lead time since SSTAs are projected onto 20 EOFs
for the prediction and the truncation error is included in
the verification.

Consistent with the forecast published in the
December 1995 issue of the Bulletin, this prediction calls
for a decay of cold anomalies in the next few months.
Warm anomalies are predicted to grow in the
southeastern tropical Pacific and extend northward, The
rapid decay of the predicted anomalies at lead times
greater than six months is an indication of the uncertainty
of the prediction at those lead times given current initial
conditions.

Penland, C. and T. Magorian, 1993: Prediction of
Nifio 3 sea-surface temperatures using linear inverse-
modeling. J. Climate, 6, 1067-1076.
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Fig. 1. Linear inverse modeling
forecasts of SST anomalies, relative
to the standard 1950-79 COADS
climatology both for the training
period (1950-84) and for these
forecasts. Forecast anomalies are
projected onto 20 leading EOFs,
based on Dec—Jan-Feb 1995-96
initial conditions (top panel).
Contour interval is 0.2°C. Positive
anomalies are represented by heavy
solid lines, negative anomalies by
dashed lines. SST anomaly data
have been provided by NCEP,
courtesy of RW  Reynolds.
Prediction by linear inverse
modeling is described in Penland
and Magorian (1993).

Fig. 2 (below). (a): Prediction
(light solid lines) and verification
(heavy solid line) of the Niro 3
SSTA based on initial conditions
Sep-Oct-Nov and Oct—Nov-Dec
1995, and Nov-~Dec-Jan and
Dec—Jan-Feb 1995-96. Dashed
lines denote one standard deviation
prediction error bars appropriate
to a stable linear system driven by

Stochastic  forcing  for  the
Sep-Oct-Nov 1995 tnitial
condition. Verification and

| prediction do not exactly coincide

at zero lead time since SSTAs are
projected onto 20 EOFs for the
prediction and the truncation error
is included in the verification. (b):
As in (a} except for Nifio 4.
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Forecasts of Tropical Pacific SST
Using a Data Assimilating Neural Network Model

contributed by Benyang Tang, William Hsieh and Fred Tangang

Deparmment of Earth and Ocean Sciences, University of British Columbia, Vancouver, B.C., Canada
Web site of the UBC Climate Prediction Group: http:/fwww.ocgy.ubc.ca

A neural network model has been developed for
forecasung the ropical Pacific SST m the Nifio 3 region.
Based on our earber neural network models (Tang et al,
1994; Tangang et al. 1996), this current model has a
number of new techniques added to better deal with noisy
data.

Normally, when a neural network is tramned,
only the network weights are adjusted to minimize a cost
funetion which measures only the differences between the
network output and the data. In our data assimilating
neural network, not only the weights, but also the network
input are adjusted. The cost function to be minimized
consists of three terms. The first term is the cost
function of a traditional neural network, measuring the
difference between the network output and the data (the
output constraint). This is simply the error of the
prediction. The second term measures the difference
between the network input and the raw data (the input
constramnt), It was proposed by Weigend et al (1996), and
was termed "cleaming”, after the words "leaming” and
"cleaning', meaning that the neural network leamns from
the data and cleans the data at the same time. Thus, the
data are modified each tire a traimng cycle is performed,
based on the assumption that the raw predictor data
contamn some errors. “Clearmng™ makes the input data
more compatible with the model, alleviating *“transient
growth” (Blumenthal 1991), somewhat similar to normal
mode initalization reducing initial gravity wave
propagation with prnimitive equations in numerical
weather prediction. The third term measures the
difference between the network output and the network
mnput for the next siep. It acts as a weak constraini of
continuity, forcing the end of one step to be close to the
beginning of the next step. Thus term is usually smaller
than the first and second terms, as the first two involve
the noisy raw data and the third term contains only the
smoothed model mput and output. During training, the
input for each step is the raw input data (first training
cycle) or the cleaned data (from “cleaming”, for
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subsequent training cycles). When training is finished, the
forecast starts from the network output for the starting
month obtained in the training, instead of from the raw
data, similar to initialization by adjoint data assimilation.
In a forecasting exercise, each step is not a separate entity
as in a training cycle--rather, it is a multiple-step
application of the trained neural network, with no
exposure to the raw or cleaned data between steps.

The data used for traming are the Nino 3 SST
index and the first 4 EOF coefficients of the FSU monthly
wind stress data (Goldenberg and O'Brien 1981). The
seasonal cycle, calculated from the 1961-90 data, has
been removed from the Nifio 3 data. Before the EOF
calculation, the wind data were first smoothed with one
pass of a 1-2-1 filter in zonal and meridional directions
and in time, and detrended and de-seasoned by
subtracting from a given month the average of the same
calendar months of the previous four years. This pre-EOF
processing is the same as that used in Lamont's coupled
model (Cane et al. 1986) and in Tang (1995),

The inputs of the neural network for a given
month consist of the Nifio 3 index and the first 4 wind
EOF coefficients of the month and the same 5 numbers
for the month that 1s 3 months earlier, amounting to 10
inputs to the network. These inputs feed into a hidden
layer with 4 sigmoidal neurons, which in turn feed into 5
linear output neurons, giving the Nifio 3 and the first 4
wind EOF coefficients for the month that is 3 months
later, Thus, the time step of the neural network is 3
months. By repeatedly feeding forward the model output
as input to the neural network, we can obtain forecasts for
longer lead times. The skill of this multiple-step forward
feeding is a good check of the predictive power of the
neural network.

The neural network has 69 weights to be
adjusted: 10 x 4 between input and hidden layer, 4 x 5
between hidden layer and output, and 4 + 5 for the two



respecuve bias vectors. There are 420 training pairs (i.e.,
sets of predictors and predictands) in the 1961-95 pened.
(The number of wraming pawrs is smaller for the
retroactive real time forecasts described later) To
prevent overfitting, we implemented a termination
scheme. For every 5 training iterations, the traming is
paused and the neural network is fed forward repeatedly
to make hindcasts. The average correlation skill of the
3rd step and the 4th step (9 months and 12 months
forward, respectively) is calculated. This leng-term skill
usually increases with tramning to a maximum (at about 80
to 100 iterations) but then starts to decrease. The trainng
18 terminated at thas maximum point, even though the
one-step error measured by the cost functien is still
decreasing

To estimate the forecast skill, retroactive real
time forecasts for January 1986 to September 1995 were
carried out, entailing a total of 118 neural network
trainings, one for cach month. Figs. 1 and 2 show the
correlation skill and the RMS error for the retroactive
real time forecast (+} from 1986 to 1995, and the
hindcast (x) and persistence forecasts (o) for the whole
period {1961-19935). The outputs obtained in the training
are used to starnt the feed forward, so that at the initial
ume the correlaton <1.00 and the RMS error >0.00. The
forecast skills are higher than the hindcast skills, largely
because the former includes only the more recent years
which are less difficult to predict. (Other models also
tend to give higher skills in the ‘80s and the “90s than in
the ‘60s and '70s.) In fact, for identical periods the
hindcasts performed here would be expected to
outperform the retroactive real-time forecasts, because
the hindcasts are based on training that includes the year
bemg forecast--i.e. 1t 1s a dependent sample skill estimate
that includes some artificial skill. Due to the 1-2-1 filter
in time, the initial condition contains information of the
next month. Thus, in Figs. 1 and 2, a 3-month lead skill
should be interpreted as a 2-month lead skill, and so
forth. The skills shown here exceed those realized for the
same data using traditbonal {non-"clearning™) neural nets,
and for linear regression algorithms,
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Fig. 3 shows the latest forecast using a neural
network trained with data up to January 1996. Six
forecasts of lead tirnes of up to 18 months were initiated
from July to December 1995. All 6 initial conditions
were obtained from one neural network training. The
forecasts starting from July and October 19935 predicted
a return to normal conditions by the end of 1996, while
the other four forecasts predicted considerable warming
in the 96-97 winter.

Blumenthal, MLB., 1991: Predictability of a coupled
ocean-atmosphere model. J. Climate, 4, 766-784.

Cane, M.A., SE. Zehiak and S. Dolan, 1986:
Experimental forecasts of El Nino. Nature, 321,
827-832.

Goldenberg, S.B., and J.J. O'Brien, 1981: Time and
space variability of tropical Pacific wind stress. Mon.
Wea. Rev., 109, 1190-1207.

Tang, B., 1995: Periods of linear development of
the ENSO cycle and POP forecast experiments. J.
Climate, 8, 682-691,

Tang, B.,G. Flato and G. Holloway, 1994: A stdy
of Arctic sea ice and sea level pressure using POP and
neural network methods. Ammos.-Ocean, 32, 507-529.

Tangang, F.T., W.W. Hsiech and B. Tang, 1996:
Forecasting the equatorial Pacific see surface
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Weigend, A.S, HG. Zimmemann, and R.
Neuneier, 1996: Cleaming. In Newral Networks in
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Fig. 3. Forecasts of Nifio 3 SST based on wind stress and
SST data through December 1995. The solid line denotes
the observed SST, and the 6 dashed lines the forecasts up to
lead times of 18 months initiating from July to December
1995.
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Analogue (Non-Linear) Forecasts of the Southern Oscillation Index
Time Series

contributed by Wasyl Drosdowsky

Bureau of Meteorology Research Center, Melbourne, Australia

An analogue selection procedure, based on the
non-linear time series forecasting technique of Sugihara
and May (1990), 1s apphed to the Southemn Oscillation
Index (Drosdowsky 1994),

The wme series to be forecast x, is "embedded" in an
E dimensional space defined by a sequence of lagged
coordinates (X, X.g, X,z s Xogey )» Where g is the lag
interval, usually taken as one time step. The E+1 closest
neighbors (analogues) to the current state, defined by the
VECIOT X, X1y, X veens Xyery + A€ found and used to
construct the smallest simplex contaiming the current
state. Future states of the system are found by projecung
each analogue forward nT, where n=1,2,..., time steps
and taking a suitably weighted average of the analogues,
The optimal embedding dimension E is determined by a
tmal and error procedure, using the library of patterns
formed by the first half of the time series to predict the
evolution at each pont of the last half of the time series.
Thus effectively determines the window over wiuch the
analogue is selected.

The forecast system has been tested on time series
with known properties. For the SOI, the optimal
embedding dimension is found to be of order 9 to 12. The
operational scheme has been used in the monthly
Seasonal Climate Qutlook issued by the National Climate
Centre of the Australian Bureau of Meteorology since
mid-1991. Analogues are selected from the entire
available SOI time series from 1876 to the present time.
An element of persistence 15 mcluded in the forecast by
adjusung the weighted analogue so that the t=0 value
agrees with the current observed base value.

The skill of the anajogue system has been examined
in hindcast experiments (Drosdowsky 1994), and is
shown in Fig. 9-1 in the September 1994 issue of this
Bulleun. For RMSE the one time step forecasts are
approximately equal o persistence while the two or more
ume step forecasts are more skillful than persistence
within the appropriate range of embedding dimension.
The spread of the analogues during the forecast period
can provide a measure of the confidence level of the
forecast.

Begmning with the forecast that appeared in the
December 1994 issue, an improved SOI data set has been
used. It covers the same Jan. 1876-present period as
before, but penods of missing data have been filled.
Information on the new data set can be obtaned from
Rob Allan (rja@dar.csiro.au).

27

Figure 1 shows the analogue forecast starting from
February 1996 and extending through May 1996. The
SOI has continued to hover close to zero for the past 3
months. The selected analogues all show similar behavior
over the analogue selection period (June 1995 to
February 1996) and exhibit similar spread over the
forecast period, compared to the forecast issued in
December. The analogue forecast shows a weak
downward trend from a small positive SOI value in
March to weak negative values in April and May.
Forecast values for the next three months (in SD units X
10) are:

March 1996 3.2
April 1996 -1.7
May 1996 -5.4

Verification of the forecasts for the previous three
months:

December 1995 F=15 V=55
January 1996 F=23 Ve 8.4
February 1996 F=84 V= 10

Figure 2 shows the analogue forecast starting from
January 1996 (one month earlier than for Fig. 1), and Fig.
3 starting from December 1995. While the forecasts from
these three start times are not greatly dissimilar (in fact,
some of the same years are seen to have been selected for
all three starting months), a forecast for a rising SOI has
tended to change to one of a falling SOI as the observed
starting point has increased from what it was in
December. The forecasts beginning from December and
February have considerable internal spread. The
verification of the two previous months' forecasts (Figs.
2, 3) was good for January and mediocre for December.

Drosdowsky, W., 1994; Analogue (non-linear)
forecasts of the Southern Oscillation Index time series.
Wea. Forecasting, 9, 78-84,

Sugihara, G. and RM. May, 1990: Nonlinear
forecasting as a way of distinguishing chaos from
measurement error in tume series. Narure, 344, 734-741,
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Fig. 1. Selected analogues and forecasts based on the
SOI up to February 1996. Points corresponding to the

January, February or March initial condition have been

Fig. 2. As in Fig. 1, except based on the SOI up to
January 1996. The verifying value for February is

indicated.

used for selecting possible analogues. For clarity, only

the best five analogues are
dotted [ines),

plotted (light dashed or

labeled with the year and month

corresponding to the current month. (The remaining five
analogues are listed to the nght.) Heavy solid and
dashed curves show the current and forecast values.
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A Probabilistic Model of the Number of Intense
Atlantic Hurricanes for 1996

contributed by James Elsner

Depariment of Meteorology, Florida State University, Tallahassee, Florida

A statistical model of seasonal hurricane
numbers is obviously an oversimplification of
complicated physics and dynamics. Thus it is
a mistake to assume that any model is a true
representation of the underlying processes.
Moreover, often information for making a
forecast is available from several different
sources.

An approach to probabalistic (or
Bayesian) prediction for annual hurricane
activity is to first think about and assume
some prior information about what to expect
for the upcoming season and then calculate
the posterior distribution of this expectation.
From this follows a predictive distribution for
hurricane activity. Here we describe and apply
a Bayesian prediction model for seasonal
Atlantic-basin intense hurricane activity.

The prediction of seasonral hurricane
activity has been given recent attention.
The work of Nicholls (1979) in developing
regression models of annual hurricane numbers
near Australia has been followed by Gray et al.
(1992) and Elsner and Schmertmann (1993)
for hurricane activity in the Atlantic basin.
The historical review of Hess and Elsner
(1894) contains many important references to
work in this area for Atlantic storms.

Applications of Bayesian statistics to
problems in climatology are discussed in
Epstein (1985). The problem of detecting
climate change from historical ‘time records
using a Bayesian approach is presented in

Solow (1988).
Let © = {6,8,,8,,...,} be the set of

all possible numbers of intense hurricanes in
a given year, where fy denotes the occurrence
of no intense hurricanes, 8y, the occurrence of
one intense hurricane, etc. Now we have two
sources of information. We have estimates
T1(60), 71(01), ... from an expert (Gray et al.)
where m1(0;) is the forecast probability of 6,
for a chosen year. Secondly, we have a Poisson
regression model (Elsner and Schmertmann
1993) with maximum likelihood criterion. The
model can be expressed as

5
72 = exp(70+ Z“/-‘Za‘)-

=1

The five predictors (z,, =3, ..., 25) include
a 10-month forward extrapolation of the 50
mb and 30 mb zonal winds, the magnitude
of the vertical shear of these winds, and

the average rainfall anomalies (expressed in
standard deviations) from the Gulf of Guinea
and Sahel regions of west Alrica. These are
the predictors originally suggested by Gray et
al. (1992). The problem is to process thesc
two pieces of information to make the best
possible forecast of the number of intense
hurricanes (#).

To construct an overall probabality
model for this situation, it makes sense to
focus on modeling the performance of the
expert. Thus we seek to determine densitics
f(p|6) rcflecting the probability p that the
expert would be likely to provide under
each situation. For example, suppose we
review Gray et al.’s past predictions and find
that when the annual numbers of intense
hurricanes were @, his predictions p followed a
distribution f(p|@). Once f(p|#) is specificd,
Bayes’s theorem can be applied to the problem
to obtain

S(pl8o)m2(80)

7(fol|p) = Sr o f(pl0)ma(8)
similarly
_ f(plo0)ma(8:)
©(6ilp) = e f(;alg:)h’:(gi)
or
B f(ple')ﬂ"z(gi)
n(8,|p) = Yo f(jp|9.-)1r2(9i),

forj=0,1,2,...,n

The above modeling process is a viable
way to proceed. The crucial factor in
evaluating Gray et al.’s predictions is the skil
of their previous predictions, and anything
short of probabilistic modeling of this skill is
likely to be inadequate (Berger 1985).

Now we describe a prediction [or
the upcoming hurricane season. The
following table gives the performance of
Gray et al.’s forecasts over the past six
years (since they began issuing forecasts).
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Year Predicted @ Observed 8
1995 3 5
1994 2 0
1993 3 1
1992 1 1
1991 1 2
15890 3 1

From this we can sketch a rough prior
distribution f(p|8) where

(2, if 8=0;

2.33, if 6=1;
fp9)y=41, ifé=2
2,  if §=3;

03, if 4=4.

Input data for the Poisson
regression model were obtained over
the network from Gray et al.’s site
http://typhoon.atmos.colostate.edu
[forecasts on December 5, 1995. Regression
coefficients for the number of intense
hurricanes, estimated from the 1950-95 data,
along with the new predictor values are given
in Elsner and Schmertmann (1995). The
predictor and predictand data sets used to
estimate these coefficients are available via
our anonymous ftp on metlabl.met.fsu.edu in
directory /pub/elsner/Declfcst.

The estimated probabilities (72(6;)) for
each possible number of intense hurricane are
given in the table below.

4; 0 1 2 3 4

72(6,) .259 .350 .236 .107 .036

From this we can apply Bayes's theorem
in a straightforward manner.

4
Y f(pl6)ma(6) =

=0

2(0.259) + 2.33(0.350) + 1(0.236)+
2(0.107) + 3(0.036) = 1.8915
so that,

W(BGIP) = f(p|90)1r2(00)
i=o F(P10.)m2(6,)
50,
2(0.259
W(golp) = ﬁ = 0.274
2.33(0.350
1(0.236
x(8alp) = "1£'§§1?) =0.125
2(0.107
x(fs|p) = £.8915) =0.113
3(0.036
x(alp) = w = 0.057

The above represents the posterior
distribution of §. Under very general
conditions the mean of the posterior
distribution minimizes the Bayes risk when
the loss function is quadratic {squared
difference). The posterior probabilities are a
combination of prior knowledge and statistical
evidence (Epstein 1985). In the situation
where the prior knowledge is useless, the
statistical evidence remains uninfluenced.

Based on the above analysis the
probabilistic model estimates 2 mean of 1.248
intense hurricanes and a probability exceeding
70% of fewer than 2 major storms for 1996.
Note this mean is slightly less than the mean
of the Poisson distribution (1.352) for 1996
(Elsner and Schmertmann 1995) and is less by
nearly one storm from Gray’s official forecast,
which calls for 2 intense hurricanes for 1996
(Gray 1995).

The underlying philosophy of this work
could be extended by noting that r; depends
solely on the intensity of the Poisson process
(that is, the parameter A). Accordingly, it is
consistent to assume that A is known only in
terms of probability statements so that we
can perform a Bayesian analysis to determine
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79 by first assuming some prior distribution Nicholls, N., 1979: A possible method for
for A. For the Poisson process there exists predicting seasonal tropical cyclone activity in
identical formulas (conjugate distributions) the Australian region. Mon. Wea. Rev., 107,
for expressing judgements about A before and 1221-1224.
after reviewing the data (Epstein 1985).

Solow, A. R., 1988: A Bayesian approach

) to statistical inference about climate change.
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