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A few years ago, Keppenne and Ghil (1992a,b; see
also previous issues of this Bulletin) introduced a
methodology to forecast the Southern Oscillation Index
(SOI) by applymng the maximum entropy methed (MEM)
10 produce autoregressive forecasts of a set of adapnvely
filtered tme series resulting from the application of
singular spectrum analysis (SSA) to the raw monthly
mean SOL The success of this methodology has led to the
development of a multivariate prediction scheme based
on the same concepts, but with the substitution of
multivariate SSA for univariate S5A (Keppenne and Ghil
1993, Jiang et al. 1995). The technique described herein
intreduces the following improvements to the linear
predicnon scheme used to issue the SSA/MEM
predictions presented in earlier issues of this Bulletin.

First, the data base used to compute the forecasts
has been extended backward from June 1945 to August
1881. Our eartier work had excluded the pre-World War
Tl data, mainly because of numerous gaps in the Tahiti
SLP. Rather than domg so here, we have developed a
variation of SSA capable of handling missing values.
Most data adaptive statistical prediction methods are best
understood in terms of an “analog forecast” (e.g. Toth
1991, Huang et al. 1993, Livezey et al. 1994).
Consequently, the extension of the data base increases the
likelihood of denufying a suitable *“analog” that will
influence the determination of the forecast's basis
functions. Figure 1 illustrates this principle by showing
an adaptively filtered SOI indicator resulting from the
complex SSA (CSSA) of the last 114 years (as of
February 1996) of the Darwin and Tahit SLP. The
sequence of events between 1910 and 1915 presents
some similarities with the early 1990s: a positive
excursion of the SOI (La Nina event) is followed by two
brief mild negative excursions. A strong La Nina event
follows, nm 1917-18. The series of circles on the
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righthand side of the curve shows the result of
forecasting the real and imaginary parts of the SOI's
leading four complex prncipal components (CPCs) using
a variation of multivariate adaptive regression splines
(MARS: Friedman 1991, Lewis and Stevens 1991, Lall
etal. 1996), a nonlinear data-adaptive statistical method
whose application to the SOI is discussed below. The
forecast is remarkably similar to its “analog™ in the 1910s
and thus testifies of MARS' ability to model the dynamics
of rarely occurring events. The prediction shown in Fig.
1 is markedly different from predictions obtained from
either the application of linear methods to the entire data
base, or from the application of MARS to the post-World
War II data. Such predictions forecast near-normal
conditions in the late 1990s (e.g. the Jiang et al. articles
in the March and September 1995 issues of this Bulletin).

Second, in contrast with our earlier work
(Keppenne and Ghil 1992a,b) in which SSA was applied
to the difference between the Tahiti and Darwin
normalized SLP time series, we apply CSSA to the
complex time series whose real and imaginary parts
consist in the Darwin and Tahiti SLP, forecast the real
and imaginary parts of the resulting CPCs separately, and
then take their differences to construct a forecast for the
fillered SOI. This seemingly innocent procedural
modification results in significant enhancements of the
objective forecast skill, because taking the difference
between two noisy time series increases the
noise-to-signal ratio. The application of CSSA to the
Darwin and Tahiti SIP followed by the subtraction of the
filiered real parts of the resniting CPCs from the
corresponding filtered imaginary parts circumvents this
problem, thereby leading to the improved forecast skill,

Third, we have replaced the linear autoregressive
MEM predictions by the nonlinear MARS methodology,



MARS has advantages that significantly increase forecast
skill. Among these are the ability to propagate a penodic
oscillaton without darnping the underlying signal, and the
data-adaptive capability discussed above. The latter
advantage provides MARS with the capability of
“analog” forecast schemes--such as radial basis functions
(Casdagli 1989), nearest- neighbor bootstrap schemes
(Lall and Sharma 1996} and local polynomials
(Abarbanel and Lall 1996)--of reconstructing the
dynamics of rarely occurring events (i.e “recording” and
“reconstructing” the character-istics of sparsely
populated regions of phase space). To enhance this
property, we have developed a variation of MARS in
which appropriate “neighbors™ of the prevailing climate
condiions are identfied in the phase space. The
regression-splines model used to 1ssue the predictions is
then fitted to represent the mapping of each selected
“neighbor” o the corresponding successor in the
phase-space trajectory. More details about this specific
procedure are provided in Keppenne and Lall (1995,
1996).

We use the following approach to objectively
evaluate our algonithm's forecast skill. Starting with 1200
complex values in our data base, we apply CSSA with a
60-month wide time window to the data, and embed the
real and imaginary parns of each CPC in 60-dimensional
phase space using lagged versions of those titne senes as
phase-space coordinates. The embedding phase spaces
are then searched for the nearest two hundred neighbors
of the ume series’ last points and MARS models are
fitted using the phase-space coordinates of the neighbors
as predictor variables and their temporal successors as
predictands. A 60-month forecast is then 1ssued for each
real and imagmary part. The corresponding forecast for
the SOI is obtained by convoluting the extended (as a
result of the forecast's issuance) CPCs with the
comresponding CEOFs, and subtracting the real part of the
resulting tme series from its imaginary part. The scheme
15 then repeated with one more complex number in the
data base representing the followmng monthly mean SLP
values at Darwin and Tahiti, and a new 60-month
forecast is issued. This procedure is repeated until the
data base 13 exhausted and the resulung 168 sets of eight
forecasts (one for each real and imagmary part of the
leading four CPCs} are used to objectively measure the
procedure’s predictive ability. Note that this is a
“retroactive real-ime” simulation, m that future
“analogs” are not used.
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Figure 2 illustrates the differences in skills between
various forms of MARS models. In it, the average error
of applying a 60-month forecast with either one of the
following methods is compared to the average error of 2
persistence forecast: (a) MEM as in Keppenne and Ghil
(1992a,b), (b) MARS with interaction level one, {c)
MARS with interaction level two, and (d) MARS with
interaction level three. MARS employs multivariate cubic
spline basis finctions for regression. The interaction level
determines the types of terms that are considered in
forming a tensor product across variables or coordinates.
Inclusion of higher- order interaction terms indicates the
presence of an increasing amount of nonlinearity in the
underlying dynamics.

The forecasts in Fig. 2 are for the time series
reconstructions involving the leading four CPCs rather
than for the monthly mean SOI itself or for its five- month
ninnmg mean. Note that all three types of MARS models
dramatically outperform the MEM models at short
(<30-month) leads. All forms of MARS models have
comparable skills for most lead times, although the
higher-interaction-level models slightly outperform the
lower-interaction-level ones.

Figure 3 shows eight 60-month lead SOI forecasts
issued ar intervals of 24 months between August 1981
and August 1993, including the relatively recent (but not
most current) forecast based on data up to November
1995. The solid line in Fig. 3 denotes the last 15 years of
the five-month running-mean SOI. Each series of
connected circles is a 60-month lead forecast, Note how
well the 82-83 and 86-87 El Nino events could have been
forecasted at leads of several years. The forecast skill
corresponding to the prediction of the 1985 and 1988 La
Nina events is also impressive. However, the skill is
much lower in the early 1990s, where all our forecasts
miss the doubly recurring mild El Nino event, This fact is
not sutprising, since the interannual variability from the
mid 1960s to the late 1980s has been highly regular (Fig.
1). Indeed, one has to go back almost 80 years in the data
base to encounter an event reminiscent of the recent
conditions {(Fig. 1). As discussed above, the strong La
Nina event predicted for the late 1990s (Fig. 1) is a result
of our vanation of MARS" ability to preduce “analog”
type forecasts, a capability not present in the SSA-MEM
approach of Keppenne and Ghil (1992a,b).

Compared with the forecast issued 3 months ago in
the December 1995 issue of this Bulletin, the present



forecast 1s reasonably similar. The strength of the La Nina
is now predicted to be slightly less than before (but still

substanual), and to peak somewhat earlier--in early to
middle 1997
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Fig. 1. Adaptively filtered Southern Oscillation
Index (SOI) time series resulting from the
complex singular spectrum analysis (CSSA) of
the monthly mean Darwin and Tahiti sea~level
pressure (SLP) data through February 1996
(solid). Note the similarity between the two brief
negative excursions of the filtered SOI following

the strong La Nina event in the early 1910s and
1 the recent conditions. The application of a
1 variant of multivariate adaptive regression
f* splines (MARS) to the real and imaginary parts
o - of the leading four complex principal
components (CPCs) resulting from the CSSA
V vields a forecast (circles on right side of curve)
reminiscent of the conditions that dominated in
“ ) the late 1910s (a strong La Nina) and illustrates
1r l E MARS’ capability to model the conditions of rare
events.
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Fig. 2. Ratio of the average forecast error of 1.00 MARS2
60—month forecasts issued with either MEM (full 0.90 SMARS]
circles), interaction—level—-one MARS models (full M ' .,,i," ..0.
diamonds), interaction-level-two MARS models ¥ .80 3:""%,.:"”‘.
(open circles) and interaction-levelthree MARS B 3 o“”oo.w
. 4 # %0000000" ¢
models (open diamonds), to the average errorofa 4 0.70 ."::" o MARS3 .'}IEM
same—lead persistence forecast. Shown is the -§ MEM .-""":'!a“""'
forecast error for the adaptively filtered time series 4 0.60L e’ .l.o°
obtained by convoluting each of the leading four 3 .50 X
CPCs with the corresponding complex empirical ¥ o
orthogonal function (CEOF). For example, the 2 0.40
average error of interaction-level-three MARS 1§
forecasts grows from about 0.25 times that of a o 0.301 &
persistence forecast at one—month lead to about M .20 e g
0.8 times it ar 60~month lead. 0 10 20 30 40 50 60

Fig. 3. Five—month running-mean SOI (solid) and
series of eight 60—month lead forecasts (series of
connected circles) obtained by combining the
forecasts resulting from the application of cubic
MARS models to the real and imaginary parts of
the leading four CPCs resulting from the Darwin
and Tahiti data’s CSSA. See text.



Forecasts of Equatorial Pacific SST Anomalies Based on Singular
Spectrum Analysis Combined with the Maximum Entropy Method

Ning Jiang, Michael Ghil and David Neelin

Department of Atmospheric Sciences and Institute of Geophysics and Planetary Physics
University of California, Los Angeles, California

Singular spectram analysis (SSA: Vautard and Ghil
1989; Ghil and Vautard 1991; Plaut et al. 1995) and the
maximum entropy method (MEM: Burg 1968, Penland
et al. 1991) are used here for long-lead forecasts of the
sea-surface temperature (SST) anomalies averaged over
the Nifio 3 area and the Southern Oscillation Index (SOI).
The forecast is for up to one year ahead, based on the last
45 years of observed data. More detailed information on
the forecast method based on single-channel SSA
combmed with MEM 1s given by Keppenne and Ghil
(1992), while mula-channel SSA (M-SSA: Kimoto et al.
1991; Keppenne and Ghil {993; Plaut and Vautard 1994)
combined with MEM is documented in the March 1995
1ssue of this Bulletin (Jiang et at, 1995). Briefly, the time
senes 1s filtered first by SSA (if umvariate) or M-SSA (if
muluvariate), so that the statistcally significant
components are retained, specifically the quasi-
quadrennial (QQ) and the quasi-biennial {(QB)
components of ENSO variability (Rasmusson et al. 1990;
Keppenne and Ghil 1992; Jiang et al. 1995). Then MEM
15 applied to advance these components in time.

Figure | shows area-averaged Nifio 3 SSTAs,
forecast and observed, since 1990, using the SSA and
MSSA-MEM schemes for a 3-, 6, 9- and 12-month lead.
The last forecast, for the next 1-4 seasons, using data
through January 1996, is shown n Fig, 2. The vertical
bars are one standard deviation in length, based on
forecast verification over the 1984.93 time span. The
forecasts indicate that the presently slightly cooler than
normal or near-normal conditions in Nific 3 may continue
through 1996. Figure 3 shows the SSA-MEM forecast
for the $OI from February 1996 through January 1997,
The 50! is expected to rernamn close to 1ts mean over this
year, The present SOI forecast agrees with the Nifio 3
SSTA forecast, although the anomalously weak
(antjcorrelation between these two ENSO signals, which
we pointed out in the September 1995 issue of this
Bulietin, continues.
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Fig. 1. Forecasts of the area—averaged Nifio 3 SST anomalies (SSTAs) by the SSA-MEM (star) and
MSSA-MEM (circle) schemes. The solid line indicates the observed Nifio 3 SSTAs. The latest forecast starts
from January 1996, shown for lead times of (a) 3 months, {b) 6 months, (c) 9 months and (d) 12 months.
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Canonical Correlation Analysis (CCA) Forecasts of Canadian
Temperature and Precipitation -- Apr-May-Jun 1996

Contributed by Amir Shabbar

Armospheric Environment Service, Environment Canada, Downsview, Ontario, Canada
ashabbar@cerdp03.dow.on.doe.ca

In the last two issues of this Bulletin, forecasts of
Canadian temperature and precipitation using the
multivariate staustical technique of canonical comrelation
analysis (CCA) were presented. For Canada, we have
developed the predictive relationships between evolvmg
large scale patterns of quasi-global sea surface
temperature, Northemn Hemisphere 500 mb circulation,
and the subsequent Canadian surface temperature and
precipitation. In this issue we present the forecasts for
Apr-Jun 1996 using the predictor fields through February
1995. These forecasts are made with a lead time of 4
months, where lead time is defined as the time between
the end of the latest predictor season and the end of the
predictand season. Further detail about the Canadian
CCA-based seasonal climate prediction is found in
Shgagbiar (1996a, 1996b) and Shabbar and Bamston
(1996).

Figure 1(a) shows the CCA-based temperature
forecast for the 3 month period of April-June 1996
expressed as standardized anomaly. Table 1 shows the
valve of the standard deviation in *C at selected stations.
The mean skill over all 51 stations 15 given in the caption
beneath each forecast map. The field significance is also
shown, reflecting the probability of randomly obtaining
overall map skill equal o or higher than that which
acwally occurred. Field significance 15 evaluated using a
Monte Carlo procedure mn which the forecast versus
observaton corres ces are shuffled randomly 1000
times. The field of cross-validated historical skill
(correlation) for the forecast time period is shown in
Figure 1(b). The forecast has a modest expected skill: a
mean national score of (.14 and a field significance of
0.082. The skill of the temperature forecast drops off
considerably in spring in Canada (see the September
1995 1ssue of this Bulletin, page 28). Local skills are
highest over the northern Canadian Prairies, and modest
skill is found on the west coast of Canada, A large area of
the country from the Rockies to Hudson Bay is expected
1o experience a negative temperature anomaly; positive
temperature anomalies are forecast for both coasts.

Figure 2(a) shows the CCA-based precipitation
forecast for the 3 month period of April-June 1996
expressed as a standardized anomaly. Table 1 shows the
vaﬁxc of the standard deviation (mm) at selected stations.
Cross-validated historical skill (correlation) for this time
period is shown in Figure 2(b). The forecast has
moderate expected skill: a mean national score of 0.14
and a field significance of 0.050. Local skills are highest
over sections of the Prairies, over southwestern British
Columbia and the east coast. Large areas of Canada
extending from Saskawchewan 1o Quebec are expected to
have a deficit in Aprii-June precipitation. The largest
deficit is forecast in central Saskatchewan. An excess in
spring precipitation 1s expected over central regions of
British Columbia and the east coast of Canada.
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Following the normal evolution of the current cold
ENSQ episode, some models are projecting a return to
normal conditions in the central and eastern equatorial
Pacific by the middle of 1996. The April-June '96
forecast recognizes the near future demise of the current
cold ENSO episode which started in the middle of last
year, and also reflects the decreasing influence of ENSO
m the warm half of the year as compared with winter and
the first half of spring. Nonetheless, the April-June
forecast reflects a strong component of persistence from
the winter circulation pattern,

Table 1. Standard deviation of temperature (Temp)
and precipitation (Prcp) for the 3 month period April
through June at selected Canadian stations.

Temp Prcp
Station () (mm)
Whitehorse 1.6 13.2
Fort Smith 2.5 19.5
Innujjuak 1.9 182
Eureka 2.6 3.5
Vancouver 1.3 26.6
Edmonton 1.7 26.3
Regina 2.1 309
Winni 2.2 37.4
Churchi 2.1 24.6
Moosonee 1.9 27.6
Toronto 1.6 30.0
Quebec City 1.3 35.3
Halifax 1.2 42,7
St John's 1.6 46.6

Shabbar, A., 1996a: Seasonal prediction of
Canadian surface temperature and precipitation by
canonical correlation analysis. Proceedings of the 20th
Annual Climate Diagnostics Workshop, Seattle,
Washington, October 23-27, 1995, in press.
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surface temperature by canonical correlation analysis.
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Fig. 1. Panel (a): CCA -basedtemperature forecast for the 3 month mean period of Apr—-Jun1996. Forecasts
are represented as standardized anomalies. Panel (b): Geographical distribution of cross—validated
historical skill for the forecast shown in (a), calculated as a temporal correlation coefficient between
forecasts and observations. Areas having forecast skill of 0.30 or higher are considered to have utility. The
mean score over 51 stations is 0.14. Field significance is 0.08.
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Fig. 2. Panel (a): As in Fig. 1a (CCA anomaly forecast), except for Apr--Jun1996 precipitation. Panel
(b): As in Fig. 1b (skill for the forecast shown in [a]), except for precipitation. The mean score over 69
stations is 0.14. Field significance is 0.05 (see text).
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Precipitation Forecasts for the Tropical Pacific Islands
Using Canonical Correlation Analysis (CCA)

contributed by Yuxiang He and Anthony Barnston

Climate Prediction Center, NOAA, Camp Springs, Maryland

In canonical correlation analysis (CCA), relation-
ships between mulacomponent predictors and multicom-
ponent predictands are linearly modeled. These typically
take the form of pattern-to-pattem relationships in space
and/or ume. CCA is designed to mmimze squared error
in hindcasting linear combinations of predictand elements
from linear combinations of the predictor elemenis.

CCA has been used 1n the social sciences for many
decades, but only in the last 10 years has it begun being
used in the atmospheric sciences. For example, Barnett
and Preisendorfer (1987) applied CCA to monthly and
seasonal prediction of U.S. temperature. Graham et al.
{1987ab) and Barnston and Ropelewski (1992) applied
it to predicting aspects of the ENSO phenomenon, and
Bamnston (1994) forecasted short-term climate anomalies
m the Northern Hemisphere. Recently, Bamston and He
(1996} explored CCA as a tool for seasonal temperature
and precipitation forecasts for Hawaii and Alaska. The
skilis resulting from the latter two studies, while generally
modest, were high enough for the U.S. National Weather
Service to use the forecasts on a real-time, operational
basis.

Here, CCA 15 used to predict 3-month total
precipiation anomalies in the Pacific Islands out to a year
1n advance, as described in He and Barnston (1996). It is
known from past work that rainfall in the tropical and
subtropical Pacific 1s strongly related to ENSO
(Ropelewski and Halpert 1987). Therefore 1t is
worthwhile to set up a seasonal prediction system that
produces real-time forecasts on a monthly basis for the
benefit of agricultural and commercial interests in the
Pacific Islands.

The predictor fields used for the forecasts include
quasi-global sea surface temperature (SST), Northern
Hemisphere 700 mb geopotential height, and the
precipitaion itself over the 33 stations used as the
predictand. Expenments with different subsets of
predictors and predictor field weights showed that the
most valuable predictor field is SST, with 700 mb heights
and prior precipitation somewhat helpful. The SST
predictors are therefore given double thewr natural weight.
Further details about the skills, the underlying
relanonships, and the nead to weight the SST double are
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provided in He and Bamston (1996). The set of
predictors is configured as four consecutive 3-month
periods prior to the time of the forecast, followed by a
variable lead time, and then a single 3-month predictand
period. The predictand includes 3-month total rainfall at
33 Pacific Island stations within 25°N-30°S, including 4
Hawaiian stations. The lead time is defined as the time
between the end of the final (fourth) predictor period (i.e.,
the time of the forecast) and the beginning of the 3-month
predictand period. This strict definition contrasts with
that in which the shortest lead forecast would be called 3-
month lead instead of zero lead.

The expected skill of the forecasts was estimated
using cross-validation, in which each year in turn was
held out of the model development sample and used as
the forecast target, These skill estimates indicated that at
1 month lead time the highest correlation skill across the
Pacific Islands occurs in Jan-Feb-Mar at 0.44 (0.29)
averaged over all stations north (south) of the equator,
and the lowest occurs from September through December
at about 0.15 (0.30) for stattons north (south) of the
equator, At four months lead skills are only slightly lower
except for the Jan-Feb-Mar average skill north of the
equator which drops significantly 10 0.26.

Figure 1a shows standardized precipitation anomaly
forecasts for 33 Pacific Island stations for Jul-Aug-Sep
1996 made using data through Feb 1996 (3 months lead).
The geographical distribution of expected skill for this
forecast, based on cross-validation, is shown in part (b)
in terms of a comelation between forecasts and
observations, The forecasts are fairly weak in amplitude,
However, a tendency toward positive rainfall anomalies
is noted north of 10°N. While this response agrees with
the findings of Ropelewski and Halpert (1987) for the
cold phase of ENSQ, that response was found to be
linuted to the cold half of the Northern Hemisphere year.
However, Bamnston and He (1996) showed that the
expected effects from either phase of ENSO may
continue for several additional seasons in Hawaii. This
delay may be cansed partly by lingering SST anomalies
off the equator at higher tropical latitudes. Presently the
east-west band of negative SST anomalies along the
equator in the central and eastern Pacific has not
expanded north of 10°N, except near Central America.



More detailed forecasts for 9 U.S -affiliated Pacific
Island stations, located as shown 1n Fig. 2, are provided
in Fig, 3. In the latter figure, long-lead rainfall forecasts
from 1 to 13 seasons lead are shown (solid bars). along
with their expected skills (lines). The horizontal axis
reflects the lead time, whose corresponding actual target
period for thus forecast 1s mdicated in the legend along the
top of the figure (e.g. 1=AMIJ 1996). The same ordinate
scale 15 used for both forecasts and skills (standardized
anomaly and correlation, respectively).

The skill curve applies to the target season for the
associated lead bme of the present forecast. Sometimes a
“return of skill” occurs as the lead is increased because a
more forecastable target season has been reached. The
forecasts and their skills differ as a resuit of both location
differences within the Pacific basin and differences in
orientation with respect to the local orography (if any)
and subsequent exposure to the prevailing low-level wind
flow. We note that ai most stattons no substantial
anomalies m either direction are predicted in the next few
months. It should also be noted that the expected skill for
the boreal warm half of the year is generally relatively
low. However, enhanced rainfall is predicted with modest
but usable skill at Johnston Island this summer, At longer
lead, a tendency for dryness is noted for boreal winter
1996-97 at Wake, Yap and Johnston Islands. While the
associated skills are not high emough to react with
concern at this pomnt, expected skill will slowly rise as the
lead time decreases.

The CCA modes (not shown) emphasize ENSOQ as
the leading mfluence on tropical Pacific climate, but most
strongly during the months of Nov-Dec-Jan-Feb-Mar-
Apr-May (and even earlier than Nov along the immediate
equator near and somewhat east of the dateline). Mild 10
moderate cold episode conditions have now prevailed for
about 9 months. Their effect on the forecasts has begun
overshadowing that of the long warmish period that
ended in spring 1995, although the forecast magnimdes
are weak. Another important mode is a long-term trend
related to a warming of the global tropical SST. This
mode can cause the forecasts to repeat from one year to
the next at given umes of the year, and may govern the
forecasts by a higher proportion in the northern summer
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when ENSO’s influence is diminished at many of the off-
equator stations.
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Fig. 2. Locations of the 9
U.S.—gaffiliated  Pacific
Island  stations whose
long—lead precipitation
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Fig. 3. Time series of CCA-basedlong - leadprecipitation anomaly forecasts, and their expected
skills, out to one year into the future for 9 U.S. —affiliatedPacific Island stations (see Fig. 2). The
bars indicate the forecast values (as standardized anomalies) and the lines indicate the
associated skills (as correlation coefficients). Both forecasts and skills use the same ordinate
scale. The target season is indicated on the abscissa, ranging from 1 (Apr—May—-Junl996)

- through 13 (Apr-May-Jun1997); see the legend at top.
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