| _ | e Alternative | Remarks | |------------------------------|-----------------------------|--| | Staple
Wheat-flour | Accompaniment Vegetable oil | Different ethnic groups exist with own food habits; pork is avoided by Moslems and beef by the Hindus. | | Milk | | Pre-harvest food shortage common. Pastoralists
don't eat fish, Introduction of yellow maize and red
sorghum may give some difficulties. Vegetable oils | | Wheat-flour
Maize flour | Vegetable
oil | and animal fats are known in most regions of the country. | | Wheat-flour | Vegetable
oil | | | Rice
Wheat-Bulgur | Vegetable
oil | | | Rice
Wheat-flour | Milk
powder | Fish not consumed by pastoralists. | | Rice
Wheat-flour | Milk
powder | | Wheat-flour Milk powder | Country | Region | Staple | Accompaniment | |-------------------------|-------------------|---|---| | 65 Mestico | | Maize flour
Rice | Phascolus vulgaris Pork Chicken Milk Cheese-milk products Vegetable oil | | 66 Mongolia | | Meat
Wheat-flour | Milk Cheese-milk products Yoghurt Vegetables Butter | | 67 Могоссо | North | Wheat-flour
Barley
Sorghum | Vegetables
Chick pea
Broad beans
Milk
Whey
Olive oil | | | Central | Wheat-flour
Barley
Maize flour | Vegetables
Meat
Whey
Olive oil | | | South
(Sahara) | Barley
Wheat-flour
Maize flour
Dates
Sweet potato | Vegetable
oil | | 68 Моzатbкрие | | Cassava
Maize flour
Sorghum
Millet
Rice | Peanuts
Fish
Meat
Peanut oil
Cottonseed oil | | 69 Nepal | | Rice
Maize flour | Pulses Vegetables Milk Cheese-milk products Yoghurt Mustard oil Butter Ghee | | 70. Papua
New Guinea | | Sweet potato
Yam
Sago | Leafy vegetables
Pulses
Pork | | 71. Nicaragua | | Matze flour
Rice | Phaseolus
vulgaris
Cottonseed oil
Meat
Pork fat | | Acceptable / | Alternative | | |-------------------------------------|----------------|--| | Staple | Accompaniment | Remarks | | Wheat-flour | Malk
powder | Fish not universally known as a food. Food habits differ among regions | | Rice | Milk
powdci | Fish not often consumed Meat is the staple. | | Rice | Milk
powder | Fish generally not used in South and Central parts. | | Rice | Milk
powder | | | Rice | Milk
powder | Argan oil from seeds of Argan tree (like olive oil) | | Wheat-flour
Dehydrated
potato | - | Cereals and tubers consumed in different proportions in different areas. | | Wheat-flour
Sorghum | Milk
powder | Beef not acceptable | | Maize flour
Rice | | Fish mainly consumed in the coastal and riverine areas. | | Wheat-flour
Sorghum | Milk
powder | | | Country | Region | Staple | Accompaniment | |-------------|------------------------------------|--|--| | 72. Niger | Saharian
Zone
(pastoralists) | Millet
Dates | Milk
Cheese-milk
products
Butter
Meat | | | Saheltan
Zome | Millet
Sorghum | Peanuts Cow peas/black- eyed beans Meat Vegetable oil | | | Sudanian
Zone
(Southwest) | Millet
Sorghum
Maize flour
Rice
Cassava | Fish
Peanuts
Meat | | 73. Nigeria | Sahel Zone
(North) | Millet
Sorghum | Vegetables
Peanuts
Meat
Fish
Milk
Butter
Peanut oil | | | Sudan Zone | Sorghum
Millet
Digitaria-
a variety
of grass | Vegetables
Peanuts
Meat
Fish
Peanut oil | | | Guinea Zone | Sorghum
Millet
Yam
Sweet potato | Cow peas/black-
eyed beans
Vegetables
Meat
Fish
Vegetable oil | | | Equatorial
Guinea Zone | Yam
Cocoyam
Cassava
Maize flour | Vegetables Cow peas/black- eyed beans Peanuts Meat Fish Palm oil | | 74 Oman | Settled
Population | Millet
Wheat-flour
Dates | Sesame oil
Butter | | | Nomads | Sweet potato
Cocoyam
Millet
Dates | | | Acceptable Alternative | | | | | |---|--------------------|---|--|--| | Staple | Accompaniment | Remarks | | | | Wheat-flour
Cassava-farina | Milk
powder | Pastoralists do not eat fish; pre-harvest food shortage common. Introduction of yellow maize and red sorghum may give some difficulties. | | | | Wheat-flour
Maize flour | Dry fish
Pulses | | | | | Wheat-flour
Maize flour | Dry fish
Pulses | | | | | Maize flour
Rice
Wheat-flour
Cassava | Milk
powder | Introduction of yellow maize may give some difficulties. Consumption varies according to seasonal supply. In the Sahel and Sudan Zone, pre-harvest food shortages common. | | | | Rice
Maize flour
Wheat-flour
Cassava | | | | | | Maize Flour
Rice
Wheat-flour
Dehydrated
potato
Cassava | - | | | | | Wheat-flour
Dehydrated
potato
Cassava | Dry tish | | | | | Rice
Wheat, Bulgur | ~4.00 | Pork avoidances. Fish is consumed in coastal communities. | | | | Yam | | | | | | Gountry | Region | Staple | Accompaniment | |-----------------|---------------------------|---|--| | 75. Pakistan | | Wheat-flour
Rice
Millet | Pigeon pea Mung beans Split peas, lentils Meat Fish Milk Cheese-milk products Vegetable oil Ghee | | 76 Panama | | Rice
Maize flour
Plantain | Phaseolus vulgarts Meat Milk Cheese-milk products Fish Pork fat | | 77 Paraguay | | Cassava
Maize flour
Wheat-flour
Sweet potato | Pulses
Meat
Milk
Peanut oil
Soya oil
Cottonseed oil | | 78 Peru | Coastal
Zone | Wheat-flour
Rice | Pulses
Meat
Fish | | | Andean
Zone | Potato
Wheat-flour
Maize flour
Wheat-noodles | Pulses
Meat
Milk | | | Humid
Tropical
Zone | Cassava
Plantain | Leafy vegetables
Meat
Fish | | 79. Philippines | | Rice
Maize flour | Vegetables
Leafy vege-
tables
Fish
Pork
Coconut oil | | 80. Qatar | | Wheat-flour
Rice
Dates | Meat
Milk
Sesame oil
Butter | #### Acceptable Alternative | Staple | Accompaniment | Remarks | |--|---|--| | Sorghum
Maize flour | Milk
powder
Pulses | Pork avoidances | | Wheat-flour
Oats | Milk
powdei
Cow peas/black-
eyed beans
Butter beans | | | Rice
Dehydrated
potato | Milk
powder | Fish is not known as food | | Barley | Vegetable
oil | Fish is not known as a food in the Andean Zone,
Vegetable oils and animal fats are used in most of
the regions | | Dehydrated
potato
Rice
Barley
Oats | Vegetable
oil | | | Rice
Sweet potato | Vegetable
oil | | | Wheat-flour | Mung beans
Pulses
Split peas,
lentils | Pork not consumed in some areas in South. | | Wheat, Bulgur
Sorghum | Milk
powder | Pork avoidances. | | | | wajur roo | ·u | |-----------------|-------------------------|---|--| | Country | Region. | Staple | Accompaniment | | 81 Rhodesia | | Maize flour
Millet
Sorghum
Wheat-flour | Vegetables Peanuts Meat Fish Peanut oil Cottonseed oil | | 82 Rwanda | | Sweet potato
Maize flour
Cassava | Cow peas/black-
eyed beans
Phaseolus
vulgaris
Pigeon pea
Leafy vegetables
Meat
Milk
Butter | | 83 Saudi Arabia | Sedentary
Population | Sorghum
Wheat-flour
Rice
Millet
Dates | Meat
Milk
Buiter | | | Nomads | Sweet potato
Cocoyam
Wheat-flour
Sorghum
Rice
Millet | | | 84. Senegal | | Rice
Sorghum
Millet
Maize flout | Leafy vegetables
Peariuts
Meat
Fish
Milk
Peanut oil | | | Caramance | Cassava
Rice
Millet
Sorghum | Leafy vegetables
Meat
Fish | | | Pastoralists | Sorghum
Millet
Milk | | | 85 Sierra Leone | | Rice
Cassava
Millet
Sweet potato | Lealy vegetables Peanuts Phaseolus vulgaris Fish Meat Palm oil | | 86 Singapore | | Rice | Leafy vegetables
Vegetables
Pulses
Soya bean
Fish
Pork
Chicken | | Acceptable A | Alternative | | | | |--|----------------|---|--|--| | Staple | Accompaniment | Remarks | | | | **** | _ | Introduction of yellow maize may give some difficulties | | | | Rice
Wheat-Hout
Potato | Milk
powae | Record of famines Cow's milk popular but not regularly consumed. Fish consumed near lakes and rivers. Dry legimes actually replace cereals in diet. | | | | Wheat, Bulgur | Milk
powder | Pork avoidances. Fish avoidances. Fish consumed in coastal communities | | | | Wheat, Bulgui | Mdk
powder | | | | | Wheat flour | Milk
powder | Pre-harvest food shortages common Peanuts are
main cash crops Introduction of yellow maize and
red sorghum may give difficulties | | | | Whcat-flour
Maize flour
Dehydraied
potato | Milk
powder | | | | | Wheat-flour
Milk
powder | _ _ |
Pastoralists do not eat fish | | | | Wheat-flour
Maize flour
Cassava-farina | Dry fish | Introduction of yellow maize may give some difficulties | | | | | | | | | Wheat-flour | Country | Region | Staple | Accompaniment | |--|--|--|--| | 87. Somalia | Settled
Population
and Semi-
nomads | Sorghum
Maize flour | Pulses
Milk
Butter | | | Paytoralists | Milk
Butter
Meat
Sorghum | | | 88. Sri Lanka | | Rice
Wheat-floui
Cassava | Vegetables
Milk
Fish
Goconut oil
Pigeon pea | | 89 St. Kitts,
Nevis and
Anguilla | | Wheat-flour
Rice
Swect potato | Pulses
Fish
Meat
Milk
Cheese-milk
products | | 90, St. Vincent | | Rice
Sweet potato
Yam
Cassava | Pulses
Fish
Milk
Cheese-milk
products
Meat
Vegetable oil | | 91 Sudan | North | Sorghum
Millet
Maize flour | Peanuts Pulses Milk Meat Sesame oil Cottonseed oil | | | South | Millet
Sorghum
Cassava
Sweet potato | Fish
Meat
Milk
Vegetable oil
Butter | | 92. Surinam | | Rice
Wheat-flour
Sweet potato
Cassava | Pulses
Meat
Fish
Milk
Cheese-milk
products
Coconut oil | | 93. Swaziland | | Maize flour
Sorghum | Leafy vegetables
Peanuts
Meat
Milk
Vegetable oil
Butter | #### Acceptable Alternative | Staple | Accompaniment | Remarks | |---|---|--| | - | - | | | Wheat-flour | Milk
powder | Fish nor a common food. | | Wheat-flour | - | | | _ | Milk
powder
Split peas
lentils
Dry fish | | | Dehydrated
potato | Milk
powder | | | Wheat-flour
Dehydrated
potato | Milk
powder | | | Wheat-flour
Maize flour | Milk
powder | Pork avoidances. Consumption varies according to seasonal supply. Introduction of yellow maize may give some difficulties. | | Wheat-flour
Rice
Dehydrated
potato | Milk
powdei | | | Wheat-Bulgur
Dehydrated
potato | Milk
powdei | Food habus differ among various population groups | | Wheat-flour
Rice | Milk
powder | Fish not popular food. Ganned fish is accepted (sardines and pilchards) Introduction of yellow matze may give some difficulties. | | Gountry | Region | Staple | Accompaniment | |---------------------------|------------------------|--|---| | 91 Syria | Settled
Population | Wheat-flour
Barley | Broad be ms
Cheese-milk
products
Meat
"Mutton
Sesame oil
Cottonseed oil | | | Nomads | Milk
Cheese-milk
products
Millet | | | 95. Tahiti | | Yam
Taro
Sweet potato | Coconut
Fish
Pork | | 96 Tanzama | Settled
Population | Maize flour
Millet
Sorghum
Plantain
Cassava | Vegetables Peanuts Cow peas/black- eyed beans Phaseolus vulgaris Meat Fish | | | Pastoralists | Millet
Blood
Milk
Meat | _ | | 97. Thailand | | Rice | Vegetables
Fish
Egg
Peanut oil
Coconut oil | | 98 Togo | North | Millet
Sorghum | Vegetables
Peanuts
Meat
Fish
Vegetable oil | | | South
(Guinea Zone) | Yam
Cassava
Maize flour
Cocoyam
Sweet potato | Vegetables
Peanuts
Meat
Fish
Palm oil
Coconut oil | | 99 Trinidad and
Tobago | | Wheat-flour
Rice | Pulses Fish Milk Cheese-milk products Meat Coconut oil | | Acceptable / | Alternative | | |--|----------------|--| | Staple | Accompaniment | Remarks | | Wheat, Bulgur
Rice
Sorghom | Milk
powder | Fish is mainly consumed along rivers. Pork avoidances. | | Wheat-flour
Rice
Sorghum
Milk powder | | | | Rice
Wheat-flour
Dehydrated
potato | _ | | | Dry fish | _ | | | Wheat-flour
Rice | - | | | Maize flour
Wheat-flour | _ | | | Maize flour
Rice
Wheat-flour | - | Introduction of yellow maize may give some difficulties. Consumption varies according to seasonal supply. Pre-harvest food shortages com in the North. | | Maize flour
Rice
Wheat-flour
Dehydrated
potato | | | | | Milk
powder | The food habits of Creole, Hindu, and Moslem population not same. | | Country | Region | Staple | Accompaniment | |---|-------------|--|--| | 100. Tunisia | | Wheat-flour
Barley
Oats | Broad beans
Chick pea
Meat
Milk
Cheese-milk
products
Olive oil | | 101 Turkey | | Wheat-flour
Wheat, Bulgur | Broad beans
Chick pea
Meat
Cheese-milk
products
Olive oil | | 102 Uganda | | Cassava
Plantam
Sorghum
Millet
Maize flour | Cow peas/black-
eyed beans
Chick pea
Peanuts
Fish
Meat
Milk
Vegetable oil | | 103 Upper Volta | Sudan Zone | Sorghum
Millet | Leafy vegetables
Peanuts
Vegetable oil
Peanut oil | | | Guinea Zone | Sorghum
Yam
Cassava | Leafy vegetables
Peanuts
Vegetable oil
Peanut oil | | 104. Uruguay | | Wheat-flour | Meat
Milk
Vegetables
Sunflower
seed oil | | 105. Venezuela | | Wheat-flour
Maize flour
Banana
Rice | Pulses
Meat
Milk
Cheese-milk
products
Coconut oil
Sesame oil | | 106 Viet-Nam,
Socialist
Republic of | | Rice | Vegetables Mung beans Golden mung beans Soya bean Meat Pork Fish Vegetable oil | #### Acceptable Alternative Remarks Staple Accompaniment Barley Milk Pork avoidances. powder Split peas, Wheat-pasta lentils Pork avoidances. Fish consumed in coastal areas. Rice Barley Maize flour Mılk Rye is used as staple in many places. powder Wheat-flour powder Rice Pre-harvest food shortages common Maize flour $R\kappa\,e$ Marze flour Rice Dehydrated potato Rice Milk powder Food habits differ in various regions. Fish not used Dehydrated Milk as food in inland areas. powder Dry fish Pulses potato Wheat-flour Wheat-noodles | | | Major | Food | |--|---|---|---| | Country | Region | Staple | Accompaniment | | 107. Western
Samoa | | Taro
Banana
Bread Fruit | Leafy vegetables
Fish
Meat
Coconut | | 108. Yemen
Arab Republκ | | Millet
Sorghum
Wheat-floui | Chick pea
Vegetables
Cheese-milk
products
Butter
Vegetable oil | | 109, Yemen,
People's Dem.
Republic | Settled
Population | Wheat-flour
Millet
Sorghum
Ruc
Dates | Meat
Milk
Ghee
Vegetable oil | | | Nonads | Sweet potato
Cocoyam
Wheat-flour
Millet
Sorghum | _ | | 110 Zaire | Tropical wet-dry areas (low lands of Kasai and lower Congo Basin) | Cassava
Maize flour
Plantain | Leafy vegetables | | | Equatorial wet areas (North districts) | Cassava
Plantain
Maize flour | _ | | | Tropical
Highlands
(Kasai) | Cassava
Maize flour
Millet | | | | Temperate
Highlands
(Katanga) | Maize flour | _ | | 111 Zambia | | Marze flour
Cassava
Millet | Vegetables
Peanuts
Fish
Meat
Peanut oil | #### References: Aykroyd, W.R. and Doughty, J. Legumes in Human Nutrition. FAO Nutritional Studies No. 19. Rome, FAO. 138 p. 1969. Aykroyd, W.R. and Doughty, J. Wheat in Human Nutrition. FAO Nutritional Studies No. 23. Rome, FAO. 162 p. 1971. | Acceptable | Alternative | | |---------------------|------------------|--| | Staple | Accompaniment | Remarks | | Wheat-flour | _ | | | Rice
Maize floui | Milk
powder | Pork avoidances. Fish on coast, Fenugreek is important accompanying item. | | Wheat-Bulgur | Milk
powder | Pork avoidances. Fish consumed on coast. | | Wheat-Bulgur
Yam | _ | | | Rice | _ | Introduction of yellow maize may give some difficulties. Vegetable oil (groundnut oil, palm oil) are consumed in nearly all regions. | | Rice
Wheat-flour | Vegetable
oil | | | Rice
Wheat-flour | _ | | | Rice
Wheat-flour | _ | | | Wheat-flour | | Introduction of yellow maize may give some difficulties. | Den Hartog, A.P. A Selected Bibliography on Food Habits, Socio-Economic Aspects of Food and Nutrition. Part I, Tropical Africa. Rome, FAO. 88 p. 1974. Food Balance Sheets, 1964-66 Average, Rome. FAO. 766 p. 1971. References: (Cont'd) Bibliography of Food Consumption Surveys. Rome. Nutrition Information Document Series No. 6. FAO. 76 p. 1973. The State of Food and Agriculture, 1974. Chapter 3, Population, Food Supply and Agricultural Development, pp. 92-154. Rome, FAO. 1975. Lista de publicaciones científicas del Instituto de Nutrición de Centro América y Panamá. Guatemala. Various pagings INCAP. 1973. Jardin, C. List of Foods Used in Africa. Nutrition Information Document Series No. 2. Rome, FAO. 328 p. 1970. May, J.M. and I.G. Jarcho. The Ecology of Malnutrition in the Far and Near East: People's Republic of China, Taiwan, Vietnam, Cambodia, Laos, Thailand, Federation of Malaya, Burma, India, Ceylon, Pakistan, Afghanistan, Iran, Iraq, Saudi Arabia and the Arabian Peninsula, Syria, Lebanon, Israel, Turkey, Egypt. New York, Hafner. 688 p. 1961. May, J.M. The Ecology of
Malnutrition in Middle Africa: Ghana, Nigeria, Republic of the Congo, Rwanda, Burundi and the former French Equatorial Africa. New York, Hafner. 225 p. 1965. May, J.M. The Ecology of Malnutrition in Northern Africa: Libya, Tunisia, Algeria, Morocco, Spanish Sahara and Ifni, Mauritania. New York, Hafner. 275 p. 1967. References. May, J.M. and D.L. McLellan. The Ecology of Malnutrition in Eastern Africa: Equatorial Guinea, The Gambia, Liberia, Sierra Leone, Malawi, Rhodesia, Zambia, Kenya, Tanzania, Uganda, Ethiopia, the French Territory of the Afars and Issas, the Somali Republic and Sudan. New York, Hafner. 675 p. 1970. References. May, J.M. and D.L. McLellan. The Ecology of Malnutrition in Seven Countries of Southern Africa and in Portuguese Guinea: The Republic of South Africa, South West Africa (Namibia), Botswana, Lesotho, Swaziland, Mozambique, Angola, Portuguese Guinea. New York, Hafner. 432 p. 1971. References. May, J.M. and D.L. McLellan. The Ecology of Malnutrition in the Caribbean: the Bahamas, Jamaica, Haiti, Dominican Republic, Puerto Rico, Lesser Antilles, Trinidad and Tobago. New York, Hafner. 490 p. 1973. Simcoms, F.J. "The Determinants of Dairying and Milk Use in the Old World. Ecological, Physiological and Cultural." **Ecology of Food and Nutrition**, Vol. 2, p. 83-90. 1973. Patwardhan, V.N. and Darby, W.J. The State of Nutrition in the Arab Middle East. Nashville, Vanderbilt University Press. 308. p. 1972. # APPENDIX 8 Energy* and Protein* Content of Common Articles of Food Included in the Staple Diet (in 100 g. edible portions) | | • | Protein | |---|--------------------------|-------------------| | Food and Description | Kcals | g. | | I. Cereals and Millets | | | | Barley (<i>Hordeum</i> vulgare) a) whole seeds b) pearled or flakes | 330
350 | 11
9 | | Bajra (Pennisetum typhoideum) | 360 | 12 | | Bamboo seeds (Bambusa arundmacea) | 370 | 13 | | Corn (Zea mays) a) whole kernel, dry, yellow, white or red b) corn meal—whole grain, bolted c) degermed d) tender, raw | 360
360
360
100 | 10
9
8
4 | | Oats (Avena sativa) a) oatmeal or rolled oats | 390 | 14 | | Rice (<i>Oryza</i> sativa) a) brown raw rice b) white raw rice c) parboiled rice d) glutinous milled rice | 360
360
370
360 | 8
7
8
6 | | Sorghum (Sorghum vulgare) | | | | Semolina (Triticum aestivum) | | | | Wheat (<i>Triticum</i> aestivum) a) bulgur wheat b) whole wheat c) whole wheat flour | 360
340
330 | 8
10
13 | ^{*}The energy value has been rounded-off to nearest 10-Kcal and the protein value to the nearest gram. | Food and Description | Energy
Kcals | Protein
g. | |---|--------------------|----------------| | II. Grain Legumes, Pulses, Dry Beans, Dahls | | | | Bengal gram, chick peas (Cicer arietinum) a) whole b) split (dhal) | 360
370
370 | 17
21
23 | | c) roasted | 350 | 24 | | Mung beans (<i>Phaseolus</i> mungo, <i>P.</i> aureus) Lima beans, sugar beans, white beans (<i>P.</i> lunatus) | 340 | 22 | | | 340 | 22 | | Kidney beans, red peas (P. vulgaris) | 340 | 24 | | Cow peas, black eye peas (Vigna unguiculata) | 340
340 | 25 | | Lentils (Lens esculenta) | 340 | 20 | | Peas (Pisum sativum) a) dry | 320 | 20 | | b) roasted | 340 | 23 | | Pigeon peas (Cajanus cajan) | 340 | 22 | | Khesari dahl (Lathyrus sativus) | 350 | 28 | | III. Roots and Tubers | | | | Cassava (Manihot esculenta) a) fresh root b) meal and flour | 150
34 0 | 1
2 | | Taro (Colocasia spp.); fresh tuber | 110 | 2 | | Potato, Irish; fresh tuber | 80 | 2 | | Potato, sweet; fresh, pale, and orange varieties | 120 | 1 | | Yam (Dioscorea spp.); fresh | 110 | 2 | | IV. Nuts and Oil Seeds | | | | Peanuts (Arachis hypogea) | 570 | 27 | | a) raw without skin
b) roasted | 590 | 26 | | c) peanut flour - partially defatted | 370 | 48 | | Soyabean (Glycine max) | | | | a) dry whole seeds | 340 | 38 | | b) soya flour - partially defatted | 260 | 46 | | V. Fruits, Vegetables, and Others | | | | Banana (Musa sapienhum; M. paradisica) | 70 | , | | a) green | 70
120 | 1 | | b) ripe | 120 | | | Food and Description | Energy
Kcals | Protein
g. | |---|-----------------|---------------| | Bread fruit (Artocarpus altilis) | 80 | l | | Dates (Phoenix dactylifera), semi-dried | 220 | 1 | | Sago | 350 | 0 | | VI. Miscellaneous Foods | | | | Rice, flaked | 360 | 6 | | Rice, puffed | 350 | 6 | | Biscuits (sweet) | 440 | 7 | | Biscuits (salt) | 525 | 7 | | Bread (white unenriched) | 270 | 8 | | Spaghetti/macaroni (unenriched) | 370 | 12 | | Sugar (brown) | 370 | 0 | | Sugar (white) | 390 | 0 | | Coconut (mature, fresh) | 290 | 4 | | Whole egg powder | 590 | 45 | | Fish flour (whole fish) | 330 | 75 | | FPC (solvent extracted for human use) | 370 | 94 | | Whole milk powder | 500 | 26 | | Skim milk powder | 360 | 36 | ## APPENDIX 9: Computations for | Average
Daily
Ration
(g.) | Feeding
Days | Total in-
take (g.)
in period
per benf. | Total in-
take (kg.)
in period
per benf. | 10 MT | 30 MT | |------------------------------------|-----------------|--|---|--------|--------| | 10 | 90 | 900 | 0.9 | 11,111 | 33,333 | | 10 | 120 | 1,200 | 1.2 | 8,333 | 25,000 | | 10 | 180 | 1,800 | 18 | 5,555 | 16,666 | | íŏ | 360 | 3,600 | 3.6 | 2,777 | 8,333 | | 20 | 90 | 1,800 | 18 | 5,555 | 16,666 | | 20 | 120 | 2,400 | 2.4 | 4,166 | 12,500 | | 20 | 180 | 3,600 | 3.6 | 2,777 | 8,333 | | 20 | 360 | 7,200 | 7.2 | 1,388 | 4,166 | | 30 | 90 | 2,700 | 2 7 | 3,703 | 11,111 | | 30 | 120 | 3,600 | 36 | 2,777 | 8.333 | | 30 | 180 | 5,400 | 5,4 | 1,851 | 5,555 | | 30 | 360 | 10,800 | 10.8 | 925 | 2,777 | | 40 | 90 | 3,600 | 3 6 | 2,777 | 8,333 | | 40 | 120 | 4.800 | 4.8 | 2,083 | 6.250 | | 40 | 180 | 7,200 | 7 2 | 1,388 | 4,166 | | 40 | 360 | 14,400 | 14 4 | 694 | 2.083 | | 50 | 90 | 4.500 | 4.5 | 2,222 | 6,666 | | 50 | 120 | 6.000 | 60 | 1,666 | 5,000 | | 50 | 180 | 9,000 | 9 0 | 1,111 | 3,333 | | 50 | 360 | 18,000 | 18 0 | 555 | 1,666 | | 60 | 90 | 5,400 | 5 4 | 1,851 | 5,555 | | 60 | 120 | 7,200 | 7 2 | 1,388 | 4,166 | | 60 | 180 | 10.800 | 10.8 | 925 | 2.777 | | 60 | 360 | 21,600 | 21.6 | 462 | 1,388 | | 80 | 90 | 7,200 | 7.2 | 1,388 | 4,166 | | 80 | 120 | 9,600 | 9.6 | 1,041 | 3,125 | | 80 | 180 | 14,400 | 14 4 | 694 | 1,083 | | 80 | 360 | 28,000 | 28.0 | 347 | 1,041 | ^{*}For convenience, final figures may be rounded upward or downward within the nearest 5%. Notes: To determine the metric tonnage of food required for a specific number of intended beneficiaries: ⁻ Find the appropriate combination of daily ration and feeding days (in columns 1 and 2); ## Requirements of Supplementary Foods* Average Beneficiaries** per MT | 50 MT | 100 MT | 200 MT | 500 MT | 1,600 MT | |--------|----------------|---------------|------------------|-----------| | 55,555 | 114.111 | 222,222 | 555,555 | 1,111,111 | | 41,666 | 83,333 | 166,666 | 416,666 | 833,333 | | 27,777 | 55,555 | 111,111 | 277, 7 77 | 555,555 | | 13,888 | 27,777 | 55,555 | 138,888 | 277,777 | | 27,777 | 55,555 | 111,111 | 277,777 | 555,555 | | 20,833 | 41,666 | 83,333 | 208,333 | 416,666 | | 13,888 | 27,777 | 55,555 | 138,888 | 277,777 | | 6,944 | 13,888 | 27,777 | 69,444 | 138,888 | | 18 518 | 37,037 | 74,074 | 195,185 | 370,370 | | 13,888 | 27,777 | 55,555 | 138,888 | 277,777 | | 9,259 | 18,518 | 37,037 | 92,592 | 185,185 | | 4,629 | 9,259 | 18,518 | 46.296 | 92,592 | | 13,888 | 27,777 | 55,555 | 138,888 | 277,777 | | 10 116 | 20 833 | 41.666 | 104.166 | 208 333 | | 6,944 | 13,888 | 27,777 | 69,444 | 138,888 | | 3,472 | 6,944 | 13,888 | 34,722 | 69,444 | | Н,Ш | 22,222 | 44,444 | 111,111 | 222,222 | | 8,333 | 16, 666 | 33,333 | 83,333 | 166,666 | | 5,555 | 11,111 | 22,222 | 55,555 | 111,131 | | 2 777 | 5,555 | 11,111 | 27, 77 7 | 55,555 | | 9,259 | 18,518 | 37,037 | 92,592 | 185,185 | | 7,142 | 13,888 | 27,777 | 69,444 | 138,888 | | 4,629 | 9,259 | 18,518 | 46,296 | 92,592 | | 2,314 | 4,629 | 9,259 | 23,148 | 46,296 | | 6,944 | 13,888 | 27,777 | 69,444 | 138,888 | | 5,208 | 10,416 | 20.833 | 52,083 | 104,166 | | 3,472 | 6,944 | 13,888 | 34,722 | 69,444 | | 1.736 | 3,472 | 6,944 | 17,361 | 34,722 | Multiply beneficiaries by total intake in kg. (column 4 on same line); Divide by 1,000, then round within nearest 5%. ^{**}From Book F., Chapter I: 'Emergency Situations' UNICEF Field Manual, Vol. I, Dec. 1975 | Average
Daily
Ration | Feeding | Total in-
take (g.)
in period | Total in-
take (kg.)
in period | | | |----------------------------|---------|-------------------------------------|--------------------------------------|-------------|-------| | (g.) | Days | per benf. | per benf. | 10 MT | 30 MT | | 100 | 90 | 9,000 | 9.0 | 1,111 | 3,333 | | 100 | 120 | 12,000 | 12.0 | 833 | 2,500 | | 100 | 180 | 18,000 | 18 0 | 55 5 | I 666 | | 100 | 360 | 36,000 | 36 0 | 277 | 833 | | 125 | 90 | 11.250 | 11.25 | 888 | 2,666 | | 125 | 120 | 15.000 | 15.0 | 666 | 2,000 | | 125 | 180 | 22,500 | 22 5 | 444 | 1,333 | | 125 | 360 | 45,000 | 45 0 | 222, | 666 | | 150 | 90 | 13.500 | 13.5 | 740 | 2,222 | | 150 | 120 | 18,000 | 18 0 | 555 | 1,666 | | 150 | 180 | 27.000 | 27 0 | 370 | 1,111 | | 150 | 360 | 54,000 | 54.0 | 185 | 555 | | Average | Beneficiaries" | per MT | | | |---------|----------------|--------|--------|-----------------| | 50 MT | 100 MT | 200 MT | 500 MT | 1,000 MT | | 5.555 | 11,111 | 22,222 | 55,555 | 111,111 | | 4,166 | 8,333 | 16,666 | 41,666 | 83,333 | | 2,777 | 5,555 | 11,111 | 27.777 | 55,555 | | 1,388 | 2,777 | 5,555 | 13,888 | 27,777 | | 4,444 | 8,888 | 17,777 | 44,444 | 88,888 | | 3.333 | 6,666 | 13,333 | 33,333 |
6 6,66 6 | | 2.222 | 4.444 | 8.888 | 22,222 | 44,444 | | 1,111 | 2.222 | 4,444 | 11,111 | 22,22 2 | | 3,703 | 7,407 | 14.814 | 37,037 | 74,074 | | 2,777 | 5,555 | 11,111 | 27,777 | 55,555 | | 1.851 | 3.703 | 7,407 | 18,518 | 37,037 | | 925 | 1,851 | 3,703 | 9,259 | 18,518 | ## APPENDIX 10 Weight and Length for Age Birth to 60 months, 6-month intervals (sexes combined) | | Weight (kg.) | | | Length (cm) | | | |-----------------|--------------|-----------------|-----------------|--------------|------------------|-----------------| | Age
(months) | standard | 80%
standard | 60%
standard | standard | 80 %
standard | 60%
standard | | 0 | 3 4 | 2 7 | 2.0 | 50.4 | 40.3 | 30 2 | | 6 | 7.4 | 5.9 | 4.5 | 65.8 | 52 6 | 39.5 | | 12 | 9.9 | 7.9 | 6.0 | 74 7 | 59 8 | 44.8 | | 18 | 11.3 | 90 | 6.8 | 81.4 | 65.1 | 48.8 | | 24 | 12.4 | 99 | 7.5 | 87 1 | 69.6 | 52 2 | | 30 | 13.5 | 10.8 | 8.1 | 91.8 | 73 4 | 55.1 | | 36 | 14.5 | 11.6 | 8 7 | 96.0 | 76.8 | 57 6 | | 12 | 15.5 | 12 4 | 93 | 99.7 | 79.7 | 59.8 | | 48 | 16.5 | 13.2 | 9.9 | 103 3 | 82 6 | 62.0 | | 54 | 17.4 | 14,0 | 10.5 | 106.8 | 85.4 | 64.1 | | 60 | 18.4 | 14 7 | 11 0 | 109.0 | 87 1 | 65 3 | Values derived from Harvard Standards (1959) From. D. B. Jelliffe, The Assessment of the Nutritional Status of the Community, WHO Monograph 53 (1966) ## Weight for Length Young children, 52-108 cm in length (sexes combined) | Length
(cm) | Weight (kg.) | | | | | | | |----------------|--------------|-----------------|-----------------|-----------------|-----------------|--|--| | | standard | 90%
standard | 80%
standard | 70%
standard | 60%
standard | | | | 52 | 38 | 3.4 | 3.0 | 2 7 | 2.3 | | | | 53 | 4.0 | 3.6 | 3.2 | 28 | 2.4 | | | | 54 | 4.3 | 3 9 | 3 4 | 3.0 | 26 | | | | 55 | 4 6 | 4. I | 36 | 3.2 | 27 | | | | 56 | 4.8 | 4 3 | 3.8 | 3 4 | 29 | | | | 57 | 5.0 | 4 5 | 3.9 | 3 5 | 30 | | | | 58 | 5 2 | 47 | 4 2 | 3.6 | 3.1 | | | | 59 | 5 5 | 4.9 | 4 4 | 3.8 | 3 3 | | | | 60 | 5.7 | 5 1 | 46 | 4.0 | 3 4 | | | | 61 | 6.0 | 5 4 | 4.8 | 4.2 | 3.6 | | | | 62 | 6.3 | 5 7 | 5.0 | 4.4 | 38 | | | | 63 | 6.6 | 5.9 | 5.3 | 4 6 | 39 | | | | 64 | 69 | 6.2 | 5.5 | 4 8 | 4 1 | | | | 65 | 7 2 | 6.5 | 5.8 | 5.0 | 4.3 | | | | 66 | 7.5 | 6.8 | 6.0 | 5 3 | 4.5 | | | | 67 | 7.8 | 7.0 | 6.2 | 5.5 | 4.7 | | | | | Weight (kg.) | | | | | | | |----------------|--------------|-----------------|-----------------|-----------------|-----------------|--|--| | Length
(cm) | standard | 90%
standard | 80%
standard | 70%
standard | 60%
standard | | | | 68 | 8.1 | 7.3 | 6.5 | 5 7 | 4.9 | | | | 69 | 8.4 | 7 b | 6.7 | 59 | 5 0 | | | | 70 | 8.7 | 7.8 | 7.0 | 61 | 52 | | | | 7.1 | 9.0 | 8.1 | 7 2 | 6 2 | 5 3 | | | | 72 | 9.2 | 83 | 7 4 | 6.4 | 5 5 | | | | 73 | 9.5 | 85 | 7.6 | 66 | 5.6 | | | | 74 | 9.7 | 8.7 | 7.8 | 6.8 | 5.8 | | | | 75 | 9.9 | 8.0 | 8.0 | 6.9 | 5.9 | | | | 76 | 10/2 | 9.2 | 83 | 7.1 | 6 1 | | | | 77 | 10.1 | 9.4 | 8.3 | 7.2 | 6.2 | | | | 78 | 10.6 | 9.5 | 8.5 | 7.4 | 6 4 | | | | 79 | 10.8 | 9.7 | 86 | 7 5 | 6.5 | | | | 80 | 11.0 | 9.9 | 88 | 7 7 | 66 | | | | 81 | 11.2 | 10-1 | 9,0 | 7.8 | 67 | | | | 82 | 11.4 | 10.3 | 9.1 | 8.0 | 6.8 | | | | 81 | 11.6 | 10.1 | 9.2 | 8.1 | 6.9 | | | | 81 | 11.8 | 10.6 | 9.4 | 83 | 71 | | | | 85 | 12.0 | 10.7 | 96 | 8.4 | 72 | | | | 86 | 12.2 | Ł1 0 | 9.8 | 8.5 | 7.3 | | | | 87 | 12.4 | EI I | 0.9 | 86 | 7.4 | | | | 88 | 12 6 | 113 | 1.01 | 88 | 7.6 | | | | 89 | 12.8 | 11.5 | 10.2 | 9.0 | 7.7 | | | | 4() | 13.1 | 11.8 | 10.5 | 9 2 | 7.9 | | | | 91 | 13 4 | 11.9 | 10 7 | 93 | 80 | | | | 02 | 13.6 | 12.2 | 10-9 | 9 5 | 8 2 | | | | 43 | 13.8 | 12.4 | 11.0 | 9.6 | 8 3 | | | | 91 | 140 | 12 6 | 112 | 9.8 | 8.4 | | | | 95 | 113 | 12.8 | 11.4 | 10.0 | 8.5 | | | | 96 | 14.5 | 13-1 | 116 | 10 2 | 8.7 | | | | 97 | 1+7 | 13.3 | 11.8 | 10 3 | 8.8 | | | | 98 | 15.0 | 13.5 | 12.0 | 10.5 | 9.0 | | | | gg | 15 3 | 13.7 | 12.3 | 10.7 | 9.2 | | | | 001 | 15.6 | 14.0 | 12.5 | 10 9 | 9.4 | | | | 101 | 15.8 | 14.2 | 126 | 11.1 | 9.5 | | | | 102 | 16 I | 14.5 | 129 | 11.3 | 9.7 | | | | 103 | 16 4 | 14.7 | 13 2 | 11.5 | 9.8 | | | | 104 | 16.7 | 15 () | 13 4 | 11.7 | 10.0 | | | | 105 | 17.0 | 15.3 | 13.6 | 11.9 | 10.1 | | | | 106 | 17.3 | 15.6 | 13.8 | 12.1 | 10.4 | | | | 107 | 17.6 | 15.9 | 14.0 | 12 3 | 10.5 | | | | 108 | 18 0 | 16.2 | 14 4 | 126 | 10.8 | | | Values derived from Harvard Standards — Stuart & Stevenson (1959). ## APPENDIX 11 Treatment of Drinking Water* #### A. Disinfection: Accomplished by boiling or by chemical treatment with chlorine using chlorine-liberating compounds Available in three forms: - 1. Chlorinated lime or bleaching powder (25% by weight of available chlorine when fresh), unstable compound; loses chlorine quickly, especially when stored in humid and warm places. Strength to be checked before use. - 2. Calcium hypochlorite (contains 70% by weight of available chlorine); to be stored in tight containers and in a dark cool place. - 3. Sodium hypochlorite, a solution of approximately 5% strength, has limited use in small quantities under special circumstances. The use of chlorine and iodine tablets and boiling of water are also limited to small quantities intended exclusively for drinking purposes. Other chemicals suitable for emergency disinfection of water include Lugol's solution (5% available I₂), tincture of iodine (2% available I₂); and various iodophor compounds. Factors affecting chlorination include: - 1. Amount of organic matter and other reducing substances. - 2 Contact time and concentration. With ordinary doses of chlorine a minimum contact time of 30 minutes should be maintained. - 3. Temperature. The effectiveness is reduced as the temperature of water decreases. - 4. Hydrogen-ion concentration. The disinfecting power reduced as the pH value of the water increases. - 5 If amount of free chlorine is higher, disinfection more effective. #### Methods of chlorination are: - I Gas chlorinators. These machines draw chlorine gas from a cylinder containing liquid chlorine, mix it in water, and inject it into the supply pipe. Mobile gas chlorinators are made for field use. - 2 Hypochlorinators. These are less heavy than gas chlorinators and more adaptable to emergency disinfection. Generally, they use a solution of calcium hypochlorite or chlorinate lime in water and discharge it into a water pipe or reservoir. They can be driven by electric motors or petrol engines and their output can be adjusted. Hypochlorinators are small and easy to install. - 3. The Batch Method. It involves applying a predetermined volume of chlorine solution of known strength to a fixed volume of water by ^{*}Extracted from Guide to Sanitation in Natural Disasters by M. Assar, WHO, Geneva, 1971. means of some gravity arrangement. The strength of the batch solution should not be more than 0.65% of chlorine by weight, as this is about the limit of solubility of chlorine at ordinary temperatures. For example, 10g. of ordinary bleaching powder (25% strength) dissolved in 5 litres of water gives a stock solution of 500mg./litre. For disinfection of drinking water, one volume of the stock solution added to 100 volumes of water gives a concentration of 5mg./litre. If after 30 minutes' contact the chlorine residual is more than 0.5mg./litre, this dosage could be reduced. After the necessary contact period has elapsed, excess chlorine can be removed to improve the taste by such chemicals as sulfur dioxide, activated carbon, or sodium thiosulfate. The first two are suitable for permanent installations, whereas sodium thiosulfate is more suitable for use in emergency chlorination. One tablet containing 0.5g. of anhydrous sodium thiosulfate will remove 1mg./ litre of chlorine from 500 litres of water. 4. Continuous chlorination. Porous containers of calcium hypochlorite or bleaching powder are immersed in water, mainly for use in wells and springs, but are also applicable to other types of water supply. A free residual chlorine level of 0.7 mg./litre should be maintained in water treated for emergency distribution. A slight taste and odor of chlorine after half an hour gives an indication that chlorination is adequate. In flooded areas a higher residual chlorine in the distribution systems should be maintained. Reaction of chlorine with phenolic or other organic compounds causes an unpleasant taste. It is an indication of safe disinfection and should be accepted. #### B. Coagulation-disinfection: Part of the suspended matter in turbid water will settle if left undisturbed for several hours. The addition of chemicals called coagulants (alum, ferric chloride, and ferrous sulfate) hastens the settling process by forming a "floc" of larger particles. Settling down of the organic matter greatly lessens the amount of chlorine needed for disinfection. Factors that govern coagulation process: - 1. Optimum hydrogen-ion concentration. The pH value changes when coagulants are used and has to be adjusted to optimum value by the addition of alkalis or acids. - 2. Thorough mixing can be accomplished by a) pump action, whereby the coagulant solution is added to the suction pipe of the pump and the pump does the mixing; b) the drip-bottle method, i.e. hanging a drip-bottle over the discharge pipe or hose of raw water that feeds the tank and letting the coagulant solution drip on the water jet; or c) dissolution, i.e. allowing the discharge of raw water to splash on to a basket containing solid coagulant. - Coagulant dosage. #### C. Coagulation-filtration-disinfection: In this method filtration is added to the procedures described above. If temporary reservoirs can be arranged, it is preferable to let the water settle before filtering it. #### D. Filtration-disinfection: In this method water is mixed with diatomaceous earth, then passed through the filter unit under pressure. Mobile purification units using this process have been produced with capacities ranging from 7,000 to 50,000 litres per hour #### E. Tests: Lests of water samples should be
made at laboratories in the vicinity of the disaster area. The most important tests to be carried out are - 1 Determination of residual chlorine (free and combined); - 2 Bacteriological examination for coliform bacteria; - 3 Determination of hydrogen-ion concentration; - 4 Determination of type of alkalinity. ### APPENDIX 12 Conversion Factors: Metric, British, and US Units ``` Length 1,600 m =1,760 \text{ yd} = 5,280 \text{ ft} = 16 \text{ km} = I mile 1\times 10^3~\rm cm ≈ 1000 m = 1 kilometre (km) = 0 625 mile 1,100 yd 91 4 cm \approx 0.91 \text{ m} = 3 \text{ ft.} = 36 \text{ in.} = 1 \text{ yard (yd)} = 1.093 \text{ yd.} = 328 \text{ ft.} 1.000 mm = 100 \text{ cm} = 1 \text{ metre (m)} = 39.37 in 0 3048 m ~ 30.48 cm = 1 foot (ft) = 12 m. 25.4 mm = 2 54 cm = 1 inch (in) = 1/12 \text{ ft} 10,000 μ = 0.394 in. = 0.033 ft. = 10 \text{ mm} = 1 centimetre (cm) = 0.0394 in. 1,000 \mu = 1 millimetre (mm) 0.001 mm \approx 0.0001 cm \approx 1 \text{ micron } (\mu) = 0.000039 in (about 1/25 000 in) Area = 640 acres 259 ha = 1 square mile (sq mile) 100 ha = 1 square kilometre (km²) = 0.39 sq mile = 247 acres 10,000 \text{ m}^2 \approx 0.01 \text{ km}^2 = 2.47 acres = 1 hectare (ha) = 4.840 \text{ yd.}^2 4.047 m² = 0.405 \text{ ha} ≈ 1 acre = 43 560 \text{ ft.}^2 10,000~\mathrm{cm^2} = 1.2 \text{ yd.}^2 = 10.76 \text{ ft}^2 = 1 \text{ square metre } (m^2) = 1.550 \text{ m}.^2 = 9 \text{ ft.}^3 = 1,296 \text{ in }^2 0.84 \text{ m}^2 = 1 \text{ square yard (yd}^2) 930~\mathrm{cm}^{+} = 0.093 \text{ m}^2 \approx 1 \text{ square foot (ft}^2) = 144 \text{ in }^2 = 1 square inch (m²) = 0.007 \text{ ft}^2 6.45~\mathrm{cm^3} = 0.155 \text{ nm}.^3 100~\mathrm{mm}^{\mathrm{J}} \approx 1 \text{ square centimetre (cm}^2) 93 \text{ m}^2 = 1,000 square feet (ft²) Volume 1,000 litres = 1 cubic metre (m^3) = 1 307 \text{ yd}^3 = 35 32 \text{ ft}^3 = 100 cubic feet (ft³) 2.83~\mathrm{m}^3 = 3.7 \text{ yd}.^3 0.77~\mathrm{m}^3 = 27 \text{ ft.}^3 ≈ 1 cubic yard (yd³) 28 32 litres = 1 cubic foot (ft³) = 0.037 \text{ yd.}^3 = 1728 \text{ in }^3 = 0.000579 \text{ ft.}^3 16.39 \text{ cm}^3 = 1 cubic inch (in³) Liquid capacity 3.79 litres = 0.83 UK gal = 231 in.³ = 1 US gailon (US gal) = 1.2 US gal = 0.26 US gal (0.22 UK gal) 4 55 litres = 1 UK gallon (UK gal) 1.000 ml = 1 litre 32 US fl oz = 1 US quart (qt) = 0.9463 litre Approx. 40 UK fl oz. = IUK qt = 1 136 litres = 0.5 USf1 oz. 3 teaspoonfuls = 1 tablespoonful ``` #### Weight ``` 1,000 mg. = 0.0352 \text{ oz} = 1 gram (g) 28 35 g 64 8 mg = 1/16 lb = 437 5 grains = 1 ounce (oz.) = 1 grain = 1/7,000 \text{ lb} = 1 pound (lb.) = 1 kilogram (kg) 453.6 g = 16 oz. = 2.2 lb = 35 27 oz 1,000 g = 1 metric ton = 1 US short ton = 2.204 \text{ lb.} 1,000 kg = 2,000 lb. = 0 893 UK ton = 2,240 lb = 1.12 US short tons 907 kg = 1 UK ton (1 US long ton) 1.018 kg. ``` Weight of water in various volumes at 16.7°C (62°F) ``` 1 ft³ = 62.3 lb 1 litre = 1,000 g, = 1 kg, = 2 2 lb. 1 US gal = 8 33 lb 1 UK gal = 10 lb ``` #### **Index** Α Abattoir, 120 Administration and organization, 3-9, 27-28, 40, 55, 60-61, 107, 124, centralized relief organization, 61-65 Adrenalin, 105 Afghanistan, 146-47 Agricultural development, 127-28; crop production estimates, 41; local food production, 77-79; relief need, 23; reports on, 11 Algeria, 146-47 Amebiosis, 98 American Council of Voluntary Agencies for Foreign Service, 17, Anemia, nutritional, 95 Angola, 146-47 Animal carcasses, disposal of, 116 Antigua, 148-49 Antihistimine, 106 Antimalariai drugs, 104 Antiparasitic drugs, 104 Assessment and surveillance, of nutrition and health problems, 31-49; of relief needs, 24, 36-39 Austrialia, 133 Antimicrobial drugs, 104 В Bahram, 148-49 Bangladesh, 21, 88; foods, 148-49; post-disaster development, 123 Barbados, 148-49 Baths and showers, 118 Belgium, 133 Belize, 148-49 Benin, 148-49 Benzyl benzoate, 101, 104 Bhutan, 148-49 Biafra, 20 Bilaterial agencies, 17 Biphenium, 102, 104 Blindness, 71 Boils, 101 Bohvia, 148-49 Botswana, 150-51 Brazil, 150-51 Breast feeding, 76, 86, 87 Bronchitis, 100 Burial, of refuse, 114-15; of the dead, 117-18 Burma, 150-51 Burundi, 150-51 \mathbf{C} Cambodia, 150-51 Cameroon, 150-51 Camps and relief shelters, 25, 26 Canadian International Development Authority (CIDA), 17 Canadian relief units, 133 Caritas Internationalis, 20 Carry-home food system, 80-82 Central African Republic, 152-53 Centralized relief organization, 61-62 Chad, 152-53 Children, food programmes, 58, 59, 79, 82-87, malnutrition, 69-71, 82-86; nutrition therapy centers, 63; nutritional measurements, 42-44, 59; vitamin deficiency, 71; weight measurement, 68 Chile, 152-53 Chloramphenicol, 98, 99, 104 Chlorination of drinking water, 196-98 Chloroquin phosphate and base, 101-02, 104 Cholera, 91, therapy for, 94, 96, 106 Clothing and shelter, immediate relief, 3, 4, 23; relief procedures, 24-25, 51; statistical data, 12 Colombia, 152-53 Communications, 23, 26-27 Compensation for loss, 26 Computers; See Data processing Congo, 154-55 Conjunctivitis, acute, 100 Conversion tables, 199-200 Costa Rica, 154-55 Cuba, 154-55 Cyclones, 20, 49, 68 Cyprus, 154-55 D Dahomey, 154-55 Danish International Development Authority (DANIDA), 17 Data processing, 12-13, 28; assessment procedures, 45-46; form preparation, 40; see also Information and data Day care, 26 Dehydration, 86; and fluid requirements, 97-100 Dead, burial of, 117-18 Demographic data, 11 Dengue, 91 Diarrhea, 58, 86, 87, 93; therapy for, 96-98 Diets, 72, 74-76 Duodohydroxyquinoline, 98, 104 Diptheria, 94, 100 Diasters, classification, 1-2, education of victims, 120-21, mitigation and prevention components, 3; operational activities, 3-4, planning for preparedness and prevention, 7-21; prediction and early warning systems, 10-11, United Nations resolution on assistance, 139-42 Diseases, associated with mainutrition, 96-102; information on, 46, reporting on, 90, 92, surveillance, 94 Disinfestation process and set-up. 118-20District level, 56 Dominican Republic, 156-57 Drinking water, 51, treatment of, 196-98 Drought relief, 23 Drugs, as malnutration therapy, 95-96, categories, 104-05; dosages, 104; list of, 103-05 Dysentery, 86, 98 #### \mathbf{F} Early warning system and prediction, Earthquakes, 23, 32 East Pakistan, 68 Economic development, post-disaster, 123-29 Ecuador, 156-57 Edema 33 47.71 103 Education, 126; of disaster victims, 120-21, See also Training Egypt, 156-57 El Salvador, 156-57 Finergency, drugs, 104, prediction of, 91-93; state of, 16 Employment generation, 126-27 Energy, food content, 185-87; needs and expenditures, 72-74; recommended intakes, 144, requirements, 69 Environment-man relationship, 1-2, 4 Environmental Sanitation and Water Supply Unit, 64 Epidemic, 23, 33 Equatorial Guinea, 156-57 Ethiopia, 158-59 Evacuation, sanitary measures during, 107-08 Excreta disposal, 112-13 External assistance, 124 Eye and ear diseases, 100-01 #### F Famme, 20, 71, 103, International Symposium, 4, 131 Fats and oils, 69, 74, 75 Field teams, 23, 32, 33, 40, 47 Fiji, 158-59 Financing tehel operations, 3, 10, 10, 20: assistance to victims, 26 Flood, 23, 32 Fluid intake and dehydration 97-100 Folate deficiency, 95 Food and Agriculture Organization (FAO), 17, 147 Food consumption, 41-42 Food deprivation, effects of, 48 Food distribution, 20-56-58; as wages for workers, 80-81, carry-home system, 80-82, free distribution, 79, 80; logistics of, 51 rationing 16, 88to vulnerable groups, 58 Food Supplies Unit, 65 Food production, development aspects, 125, 127-29 Food programs (teeding), 3, 69-88, cleanliness and hygiene of centers, 86-87; design of diets, 74-76, determination of food needs, 72-74, 76-77; importance of weight measurement, 46-47; in short-term relief program, 51-53 knowledge of nutritional needs and problems, 69-72, medical-care support, 86, organization of program, 51-68; personnel of feeding units, 65; spot feeding, 80, 82; supplementary feeding, 80-82, 87, table of computations for requirements, 190-93; therapeutic feeding, 80, 82-86 Food supply, 4, 11; determining requirements, 76-77; information on, 33, 34, 41, surveillance, 47 Foods, and alternatives (table), 146-86, energy and protein content, 187-89; local production, 77-79; processed, 77; statistical data, 12, supplementary, 190-93 France, 134 Funds: See Financing relief operations #### G Gabon. 158-59 Gambia, The, 158-59 Gastroenteritis, 86 Ghana, 158-59 Guadeloupe, 20 Guatemala, 160-61 Guinea, 160-61 Guyana, 160-61 #### Н Haiti, 160-61 Somalia 178-79 Refuse, 114-16, animal carcasses, 116, Spot feeding system, 80, 82 collection, 114, disposal, 114-16; Springs and wells (for water), 108-11 meineration, 115, manure, 115-16 Sir Länka, 178-79 Rehabilitation, assessment of needs, Staple foods, 74-76, 87 34, man-environment relationship, Statistical information; See Information 2, post-disaster, 7, 123-29, and data short-term, 3 Relief, assessment of needs, 34; Streptomycin, 99, 104 centralized organization, 61-62; Subdistrict level, 56 Sudan 178-79 feeding programs, 79-86; general Sulfa, 106 procedures, 23-33, long-term program, 54-63; man-environment Sulfadiazine, 98, 100, 102, 104 Sulfadimidine, 98, 100, 102, 104 relationship, 2; materials, 16; medical/health services, 89-106, Sulfonamide, 94, 104 Supplementary feeding, 58, 59, 62-63, organizing of food and health, 80-82, 87, food requirements, 90-93 Supplies, 3, 7, 10, 14 51-68; personnel, 27, post-disaster, 3-7, 24: preparedness and prevention planning, 3, 4, 7-21; short-term program, 51-54; table of Surface waters, 110-11 Surgical equipment, 103 Surmam, 178-79 needs, 23 Swaziland, 178-79 Reporting, 33-34, on assistance, 46-47, on medical services, 90-92, Sweden, 135 significance, 91 Swedish International Development Rescue and evacuation operations, 24 Authority (SIDA), 17 Research and study, 18; institutions Switzerland, 135 and units, 133-36 Symptomatic drugs, 105 Resource mobilization, 24 Svria, 180-81 Respiratory diseases, 96, 98-100 Rhodesia, 176-77 1 Ringer Lactate
(sterile), 97, 105 Roundworm infestation, 102 Lahiti, 180-81 Rubella, 94 Fanzania, 180-81 Rwanda, 176-77 **Technical Assistance Information** Clearing House, 138 Technologies for development, 126 Tetanus, 94, 103 St. Kitts, Nevis and Anguilla, 178-79 Fetracycline, 97-101, 104 Fhailand, 92, 180-81 5t Vincent, 178-79 San Andreas fault, 20 Sanitation, 112-21: abattoir, 120; burial Therapeutic feeding, 80, 82-86 Thiacelazone, 99, 104 of the dead, 117-18; disinfection and disinfestation, 118-20; during Fogo, 180-81 evacuation, 107-08, education of Fonsillitis, 100 Framing, 3-6, 10, 11, 14-15, 60-61, victims, 120-21; excreta disposal, 112-13, miscellaneous installations, medical/health services, 90; needs 118; relief needs, 23, 26, 33; solid and facilities, 20; of disaster victims, waste disposal, 113-16; vermin 120-21 control, 116-17; waste water Transport, for field work, 33; general disposal, 116; water supply, 107-21 procedures, 26-27; relief need, 23 Saudi Arabia, 176-77 Trauma surgery, 23 Scabies, 93, 101 Fraumauc injuries. 103 Trinidad and Tobago, 180-81 Tuberculosis, 93, 99, 104 Scurvy, 71 Senegal, 176-77 Shelter; See Clothing and shelter Tumsia, 182-83 Lurkey, 182-83 Typhoid, 93, 94, 98 Sierra Leone, 176-7 Singapore, 176-77 Skim milk preparations, 84 Skin diseases, 101 11 Slaughtering arrangements, 120 Smallpox, 93, 106 Uganda, 182-83 United Nations, agencies and organizations, 17-20; General Snap and water washing, 94, 101 Social services, 26, 125 205 Assembly resolution on disaster assistance, 123, 139-42 Solid waste disposal, 113-16 Socioeconomic development, 127-28 United Nations Children's Fund (UNICEF), 17, 82, 88, 106, 140 United Nations Development Program (UNDP), 17, 19, 124, 139, 140 United Nations Disaster Relief Organization (UNDRO), 5, 6, 14, 17, 123, 124; address, 135, functions, 18-20, publications, 143, United Nations resolution establishing Office of Disaster Relief Coordinator, 139-42 United Nations High Commissioner for Retugees (UNHCR), 140 United States, 135-36 United States Agency for International Development (USÁID), 17, 138 Upper respiratory infection (URI), 100 Upper Volta, 182-83 Urban disaster relief, 23 Urmals, 113 Urmary tract infection, 102 Uruguay, 182-83 #### ٦ Vaccine campaigns, 26 Venezuela, 182-83 Vermin control, 116-17 Vict-Nam 182-83 Village programs, 55-60 Vitamins, 104; deficiency, 58, 59, 71-72, 96, in diet, 76, recommended intakes, 144-45 Voluntary organizations national, 16-17 #### \mathbf{w} Wages, food as, 80-81 Warehousing procedures, 26-27 Washing, 94, 101 Waste disposal, 126 Waste water disposal, 116 Water, agricultural use, 79; distribution, 112; drinking, 51; relief need, 23, storage, 111-12, surface, 110-11; treatment, 51, 107-08, 111, Water supply, 107-12, development, 126; and environmental sanitation. 107-21, information on, 32, 41; safety during evacuation, 107-08, sources and systems, 108; springs and wells, 108-11, surface, 110-11 Weight, malnutrition and, 71; measurement of, 42, 46-48, 59, 68; tables, 194-95 Well construction, 108-11, 121 West Africa, 91 Western Samoa, 184-85 Work programs, 26 Workshops and meetings, 5, 6 World Council of Churches, 20 World Food Program (WFP), 17, 140 World Health Organization (WHO), 17, 59, 73 World Meteorological Organization (WMO), 17 #### Y Yellow fever, 94 Yemen Arab Republic, 184-85 Yemen, People's Dem Republic, 184-85 #### Z Zaire, 184-85 Zambia, 184-85