6. Deformation Analysis

Deformation analysis is the study of the changes the shape of an
arbitrary body in time. In surveying it has come to mean the observations
of the geometrical changes of a body. Thus it might concern the study of
dams, tectonic movements etc. The approach must depend on the desired
result and the accessible measuring devices. For surveying the most
important approach is through geodetic or photogrammetric methods,
where observation data from different epochs are compared. Usually the
analysis is divided in three types depending on its characteristics.

. Deformation of static bodies
* Deformation of kinematic bodies
. Deformation of dynamic bodies

The deformation of static bodies is where the movement vector between
two or more epochs is the interesting result. The deformation of kinematic
bodies is when one is interested of a function that describes the movement
of a body, e.g. to describe the movement of a body through its velocity and
acceleration. The deformation of dynamic bodies is normally used for
processes that change form during a period of time and return to the
original state afterwards, e.g. the deformation of a bridge while a car goes
across it. This thesis will concentrate on the static bodies, as those with
available data are the most adequate for the problem of Santiago de
Puriscal. If more epochs had been measured a kinematic study would have
been in place.

The adjustment of the observations of a deformed body can be described
by the following matrix model. This model is for the general case with n
epochs.

Ay A A, x
A A vee

L+ V= 21 22 * (6. 1)
Anl Ann xn

In this model L are the observations, V the residuals, A, to A,, are the
configuration matrixes of the observation of each epoch and A;; are the
functional connection between the observations of the epochs. In some
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special cases the functional connection can be of interest, but generally
there is no functional connection between the epochs or it is ignored. Thus
A, (i»j) is considered a zero matrix. Therefore the following simplification
can be done (Pelzer, 1985).

A, 0 .. 0] |x
0 Azz e

L+V= * (6.2
0 Al X,

In the above model the problem will be to prove that the x, tox, are
equal or not. The process of how to prove this and how to locate the
displaced points will be described in the following chapters. This process of
proving may seem unnecessary in cases where the movement in all points
is considerably bigger than the standard error. However, in cases where the
size of the displacements are close to the standard error of the observations
such a test is in place. The model for a deformation analysis of two epochs
is as follows.

All
0 A,

X
x| 1

L+V= (6.3)

X2

The above described methods only detect the displacements of a body,
but do not describe the movement as a function of time or other factors. It is
possible to build a function where the objective would for example be to
analyse the velocity and acceleration of the body. A simple mathematical
expression of a kinematic body could thus, by the help of Taylor series, be.

ax 1 d%x
X, = X +—(t, -t )+ =—(t; - t,)+...
ot 2 ot (6.4)

=X, +XAt +—;—§At1+...

This formula can now in a rather simple way be transferred to a matrix

form, where the sought parameters are x,x and X.
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v,| |4, Aat  AAd
L,| Vo] |4, AAt AAR] |x
Ly|+|Vs|=|4, AAt AAC|*x (6.5) (Pelzer, 1985)

X

L. |Vi| |a, AAt AAP
Here A, is the configuration matrix, At the time difference, x the

displacement and x, x the velocity and the acceleration respectively. It is
thus possible to build a function, from the observation data, to describe the
needed physical phenomenon. The adjustment or treatment of kinematic
analysis is beyond the objective of this thesis.

6.1. Absolute and Relative Deformation observations

The deformed body can be observed with some known and stable
external points. Then the observation type is called absolute deformation
observations. In the absolute deformation network the displacement of a
body is compared to its stable neighbourhood. Thus it is possible to
calculate the velocity of a body, e.g. in Santiago de Puriscal it would be
possible to find how fast the landslide is moving.

If no points outside the deforming body can be considered stable, the
network must be considered as relative. In the relative network the
internal difference (between observations or co-ordinates) between the
epochs is the interesting one. It will only be possible to detect changes in
the geometry of an network and not whether the network as a whole is
moving or rotating. This results in the fact that in the Puriscal network
only internal strain can be found.
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Figure 8.1, Absolute and relatlve network (Pelzer, 1985).

In both relative and absolute networks datum defects can be found. The
problem is to decide whether the detected displacements are the result of
real movements. They can also result from errors in the observations or
differences in datum of the two epochs.

In the case of absolute observations the equation (6.2) can be modified by
excluding the stable points from the moving ones. Then the following
equation is obtained.

AjA, 0 .. 0] Ix,

A, 0 A x
L+V=| 2 # [l (8.8)

A, 0 .. Al X

In this equation Ag; describes the configuration matrixes of the stable
points that now define the datum, , is thus the vector of unknowns for
stable points. In this case the other points, the unstable ones are said to be
the object points. For a relative analysis the general equation (6.2) is valid.

6.2. The Datum problem

When discussing the datum problem a distinction between absolute and
relative networks must be done, as the problem of datum defect (see
chapter 6.2.1) is different. In the absolute network the datum is defined by
stable points, but it should be tested whether they have moved or not
between the epochs. In a relative network the datum is more difficult to
define as it is not possible to assume any stability, i.e. all points can move
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in any direction. Thus there is no configuration of points that can be used
as a datum without a prior testing. It is even questionable whether a datum
is interesting in a relative network at all. In many cases the desired result
is not relative to the datum but the differences between the observations in
the epochs. The difference between two distances does not require any
datum (if the length unit is not considered a datum).

Dimen | Type of Type of datum Free datum
-sion | Network | observations defects parameters
1 Height Levelling 1 1
network Translation
2 Plane Distances, 4 2
network | Azimuths and Translations
Directions
1 Rotation
1 Secaling
3 Space Distances, 7 3
network Azimuths, Translations
Zenith .
Azimuths and 3 Rotations
Directions
' 1 Scaling

Table 6.1, Free datum parameters.

6.2.1. Datum defect

The datum defect should be understood as any kind of differences that’
are not deformation dependant nor in the datum definition between the
involved epochs. For example the different scale of the networks in various
epochs is then taken care of. Due to the free network adjustment it might
as well be necessary to translate and rotate the network. Table 6.1 shows
which parameters define the datum defect.

6.3. The S-Transformation

In 1973 Baarda developed a method that allows transformations of
networks between datums. This method is called S-transformation
(Similarity Transformation), which is used to transform all epochs to a
common datum. With the S-transformation it is possible to transform both

54



the displacement vector and the covariance matrix to a common datum.
Even though the adjustment is done in an arbitrary datum. With this

method some datum defects can be eliminated, e.g. the scale error, rotation
or the translation between epochs.

To do the S-transformation from the datum k& to the datum i, an S-matrix
is built by

S, =1-G(G'E,G)'G'E, (6.7)

where I is the unity matrix and G is a configuration matrix for the free
datum parameters. E is a diagonal matrix that decides which points are
datum defining. If a point is datum defining the element in the diagonal is
1, otherwise 0. The G-matrix can have the following form.

10y x
01 -x, vy,
10 vy, x
0 1 -x
G= 2 Y (8.8
1 Yo Xa
01 -x, vy,

where x and y are reduced with respect to the centroid® of the network.
This G-matrix is an example with two translations and one rotation,
comparable to the matrix configuration of a Helmert transformation in 2
dimensions. The G-matrix can be constructed to fulfil the needs of each
application.

The advantage of the S-transformation is that it does not change the
inner geometry of the network and it is not necessary to know the datum
one wants to transform from. With the S-matrix it is possible to transform
both the co-ordinate vector x, and the covariance matrixes Q, to a common
datum by

8Reduction with respect to the centriod : ,,dmdxﬁxi-(yn)z& . For Y and Z in the same

way.
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X, =5,x, (6.9

Q, =S,Q;S (6.10)

6.4. Free network adjustment

Free adjustment is done to avoid all strain that occur in the network
when known co-ordinates constrain the residuals. Here three methods of
doing free network adjustment will be discussed.

. Strain-free adjustment
. Total trace minimisation
. Part trace minimisation

6.4.1. Strain-free adjustment

In the Strain-free adjustment two points are used as fixed, they then
define the datum. Thus no strain is evaluated in the network, as the two co-
ordinates only define orientation and scale of the network. An advantage of
this method is that it can be used in any adjustment program. A
disadvantage is that the two known points are errorless. The effect of the
strain-free adjustment can be seen in the following figure.

Figure 6.2. Strain free adjustment. A is for the fixed points, 1 and 3. o Indlcates the
new points. The ellipses Indicate the error ellipses {Pelzer 1985).
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6.4.2. Total trace minimisation®

In the Total trace minimisation all points define the datum and no point
is fixed. The advantage of this method is that no point is errorless. The
disadvantage is that a special adjustment program is needed. The datum in
this kind of network adjustment is the centroid of the network. In this type

of adjustment all points have an error.

Figure 6.3. Total trace minimisation. * indicates the datum defining points. The
ellipses Indicate the error ellipses (Pelzer 1985).

6.4.3. Part trace minimisation'?

In the Part trace minimisation some points define the datum and the rest
are new points. The way of calculating is almost the same as for the Total
trace minimisation. For deformation studies this type of adjustment is the
most suited one, as the points can be divided into two groups. One for those
that define the datum and other for the new points, i.e. stable and object

points.

9Direct translation from the German term "Gesamtspurminimierung”, which means a
minimisation of the whole trace.

10Direct translation from the German term "Teilspurminimierung”, which means a
minimisation of a part of the trace.
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Figure 6.4. Part trace minimisation. ® indicates the datum defining points. o indicates
the new points. The eliipses indicate the error ellipses (Pelzer 1985).

To calculate the total trace and the part trace minimisation the following
technique is used.

-1

Qxx Gd(G::lGd )’1
(GiG.)'G, 0

<=> G, =E,G (6.11)

A'QJA G,
G, 0

where G is the same as the G-matrix in formula 6.7, and E; is a diagonal
matrix with one for elements defining the datum and zero for new points. It
is advantageous to include the G-matrix, as orthogonal bordering in the

matrix inversion, as (A'Q;'A) for a free network is singular and has
therefore no unique solution. The condition (A'Q;'A)G,= 0 must be fulfilled.

Q;! is the weight matrix of the observations. In this thesis the question of
how this matrix inverse is obtained will not be discussed, but we refer to_
literature on generalised matrix inverses, e.g. Sjéberg (1990).

6.5. Statistical testing of a deformation model

Consider the following matrix equation describing a constraint on the
deformation :

Bx=w (6.12)

where B describes the movement, x is the co-ordinate vector and w the
misclosure
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We now define a null hypothesis (H,) that no deformation has taken
place. The alternative hypothesis (H,) is that deformation has occurred.

Hy:Bx=0 (6.13)
H,:Bx<>0 (6.14)

Those two hypotheses are tested with some appropriate statistical test,
e.g. the Global Congruency test, see below.

6.6. The Global Congruency Test

In order to judge if any movement within a certain network is
statistically secure, some kind of statistic test has to be performed. The
Global Congruency Test is the one most commonly used. In this test a
deformation related parameter is calculated from the data and compared to
its theoretical distribution.

The displacement between two epochs can be written as
d= xz - Xl (6.15)

where x,, X, are the co-ordinate vectors of each epoch. In this case we

form (6.12) with B=[-I, 1], x=)x, x,| and d=w, where I is the unit
matrix.

Now the null hypothesis H, : d = 0 can be tested against the alternative
hypothesis H, : Bx <> 0.

Assuming that the estimated vectors x, and x, are uncorrelated and
have the covariance matrixes Q_, and Q,,, , the covariance matrix of the
displacement d becomes

Qdd = Qm + Qm (6-16)

Furthermore, the standard error of d becomes

(6.17)

J (vipv), + (V'pv),
So =

UDjrect translation from the German term "Globales Kongruenz Test".
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f=f,+f (6.18)

(vtpv); is calculated as in chapter 4 and f; is the number of degrees of
freedom. To see whether a displacement has taken place, the following test
quantity is calculated

-1 3t
F=i°—d;— (6.19) (Pelzer, 1985)

S

This value is compared to a value determined by the F-distribution (see
chapter 6.6.1). If F is bigger than this value then the displacement can be
considered non zero or significant i.e. d<>0. Otherwise if F is less than this
value then the null hypothesis H, is judged true, i.e. no displacement
within the network has taken place.

6.6.1. T‘ﬁe F-distribution

The F-distribution or the Fisher distribution was developed by R.A.
Fisher in 1924. It is based on the x2-distribution. It is used to compare the
distribution of two different standard errors, m and n. It is defined as
follows.

Xa

F_=to (6.20)
%
fﬂ

where f, and f, are the number of degrees of freedom of x2 and xZ. As
the definition of the x2-distribution is

X' == (6.21)
O;

where f is the number of degrees of freedom, o is the theoretical
standard error and s the empirical one. If (6.21) is put into (6.20), Jﬂle
following relation between two variances is obtained.

ll’n
Ll & )

F,,= (6.22)

o
o s

NN
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where m,n are the number of degrees of freedom for each variance. For
further information on the F-distribution we refer to Pelzer (1985).

6.7. Localisation of displaced points

There exist various methods to find if a points is significantly moved.
The ones that will be described here are the method of maximal
displacements, S-transformation and an approximate analysis.

6.7.1. The method of maximal displacements!®

The method of maximal displacements divides all the points in two parts;
stable and displaced, where the stable points define the datum. The way of
testing is the following: remove points with significant displacement from
the stable points and keep the rest as stable points. The test value is
obtained as follows

R, =d!(Qa) 4, (6.23)

where d, Q are defined as in chapter 6.6. R_,, is then eliminated from
the stable points. The stable points are transformed to a common datum,
and a Global Congruency test is done to control whether there is any
significant movement left in the network. Then the process is repeated
until the Global Congruency test shows no significant movements within
remaining datum points. Then the points remaining stable have not had
any significant movement while the ones in the displaced group have
moved. Below the process is shown in schematic form.

1) Global Congruency test to test significant displacement

2) Calculate R, for all stable points

3) Put the point with biggest R, among the displaced ones

4) Through an S-transform (see chapter 6.3) the remaining
stable points are transformed to a common datum

5) Repeat the process until the Global Congruency test shows
no significant displacement left in the network

It is important that the points participating in the test exist in both
epochs, as they in one epoch have no co-ordinates nor any variances. Thus
this test is ideal for identical network configurations.

12Djirect translation of the German term "Maximalen Klaffungsanteile", which means
maximal displacement parts.
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6.7.2. By S-transformation

Localisation with S-transformations is done by transforming both epochs
to a common datum by S-transformations, as described in chapter 6.3. The
method divides the points in three groups; stable, displaced and not
common in both epochs. First d; and Q4 are calculated as follows.

d; =(X¢)y - (X )y (6.24)
Qﬂ' = (Qﬂ')l + (Qn‘)z (6-25)
R, =d;Qpd, (6.26)

where the index outside the parenthesis indicate the epoch and f
indicates fixed points. R, is calculated, as in the global congruency test, for
all combinations of all but one fixed point. Then the point with minimum Ry
is significantly displaced. Below the process is shown in schematic form.

1) Consider all common points as fixed.
2) S-transform both networks to a common datum.

3) Calculate d; and Qg

4) Calculate R for all points _

5) Remove Ry minimum from the fixed points and place point
among the displaced ones.

6) Continue until R;is shown to be non significant

6.7.3. An approximate analysis

If there exists no covariance matrix, or only parts of them for the two
epochs, an approximate analysis can be used. With this method only the
elements closest to the diagonal of the co-variance matrix will be used. All
unknown correlations will be set to zero. During the calculations the
following steps will be taken:

1) An S-transformation, where only the sub matrixes along the
diagonal are calculated, as those are the only ones needed in
the rest of the calculations.

2) The test value for the Global Congruency test will be

N
T= 2 d}(Q,,):'d, (8.27)
where N is the number of fixed points, (Q,,); is the sub matrix for point i
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This method is the same as the method of maximal displacements, only
the co-variance matrix has been exchanged with an approximation.
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7. Presentation techniques for deformations

This chapter deals with different ways of presenting and illustrating
deformation results. In some cases, the movements of the chosen points are
not the only interest, but the general movement or tilt of a certain part of
an area. Since it is not practical to have a very dense network,
generalisations have to be done. Two ways of doing this are to interpolate a
surface in between measured points or to neglect the terrain around them.
The objectives of the techniques are either to make the general tendencies
easily visible or to extract other sorts of information through the
deformation data, e.g. strain in the ground.

7.1. Illustration by vectors and error ellipses

This is a common method for illustration of the deformation results. The
method has been used in chapter 8 for illustration of the plane
displacements by the PANDA program (see GeoTec GmbH, 1992). The
presentation base is a map showing the configuration of the deformed
points. In the planar case, lines are attached to all points showing the
approximate magnitude and direction of each point movement. The
standard errors for the deformations are then symbolised by ellipses that
make it possible to compare the accuracy with the movement. In the
following figure point 1 has no determined movement, while point 2
appears to move. The direction of the movement can be obtained relative to
the local system or the north direction.

o P

Point 1 Point 2

Figure 7.1. Deformation illustration by vectors and ellipses,

By studying a figure containing several points, one can get an easily
grasped view of the movement situation in the tested area.

For vertical deformations, an illustrated vector can only show the
magnitude of the displacement. The mean error is more difficult to
illustrate, since no ellipse can be drawn. A vector showing the mean error
then has to be put beside the movement vector.
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Figure 7.2, Vertical deformation illustration by vectors.

7.2. Vertical deformations illustrated by terrain
models

The purpose of using terrain models to illustrate the deformations is that
it makes it easy to grasp the general and local tendencies of the vertical
movements. The method uses interpolation technique, so the model is only
to be taken as a hypothesis. This since locations in between points obtain
deformation values even though they are unknown.

For the processing a terrain model program is needed. As input data, the
X and Y co-ordinates for the points are used, as well as the deformations
representing Z. The program constructs a grid within the limits of given
point co-ordinates. The density of the grid is entered by the user or from a
default value. The program then calculates X and Y for every single line
intersection in the grid. One method for calculating the Z-value of the
intersection is by finding its three nearest points. This is done e.g. by using
the least square method for the distance between the intersection and all
given points. The three closest points (that can form a triangle enclosing
the intersection) are used.
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® Giictine Intermction

Figure 7.3. Plane creation.

A plane is constructed which involves the three points as seen in figure
7.3. The intersection then obtains the Z-value it would have if it was
situated in the plane.

This method is repeated so that X, Y and Z co-ordinates are known for all
intersections . By deciding the location of a certain viewpoint, a 8D =2D
transformation will give the intersection locations as viewed from the
desired point.

Figure 7.4. Grid construction.

The grid is then constructed by drawing the lines between all
intersections. After this, graded axes may be added. An example of the
whole application can be seen in figure 8.10.

7.3. Tilt changes illustrated by planes

When the positions of the points are known, it is possible to check if the
measured area as a whole is tilted in any size and direction. This
application is useful in cases where tilt changes are of main interdst. An
example of those is volcano slopes, where a tilt change may be a sign of a
coming eruption. Another use is in building or road restoration, where it
can be controlled if a surface (e.g. a floor) has tilted during a certain period
of time.
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7.3.1. Tilt calculation method described by Mori (1988)

A mathematical method is explained by Mr H Mori (see Mori and
Suzuki, 1988). The method uses points in a network where the levels and
plane co-ordinates have been calculated relative to a chosen reference
point. The X and Y values are not needed to be very accurate, since
variations only affect the planar directions slightly. Therefore, the plane co-
ordinates are often looked upon as constant over the epochs.

Two observation epochs of a certain network are then compared to find
the tilt change for the concerned period of time. The comparison is made by
calculating tilt change and azimuth for all combinations of two points in the
network. These part results can then be plotted as an early check for gross
errors. An example is seen in the following figure.

TRt (mgon)

° 1 | NS | | Azimuth (gon)

© Point

@ Point - Quiller
Figure 7.5. Plot of tilt changes and azimuths for all point palrs.

For a definite tilt tendency, one should be able to distinguish a sine-
shaped curve with a certain phase shift. If such one is drawn, the gross
errors can be detected as outliers in the plot. An approximate tilt direction
can be obtained by reading the azimuth of the maximum value of the curve.
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For the mathematical process, the following parameters are needed.
Except for the parameter i, the unit is gon.

i Point pair number

] Azimuth of point pair

A Amplitude of tilt change vector
Ay, Ag Part results

w Azimuth of tilt change vector
T, Observed tilt change

Table 7.1. Parameters for the Mori calcutation method.

(ZT*oosﬁ)*(zcosﬁ *sind, ) ~ ()_‘rT*smG) (Zcos
zcosﬁ *sind, )* (Zsmzﬂ )*(200829)

(7.28)

(2'[;*sm0) (20039 *sin@,) ~ (ET*cosﬂ) (ZSm
(Zcosﬁ *5in@, )? -—(281{129) (200326 )

(7.29)

A=A +A, (7.30)
@ = Arctan(A, +A,) (7.31)

The result is obtained as a vector with magnitude A and direction w. The
presentation form seems to be accurate and with an easily comprehensive
result, but any error estimations were not found. For this reason, a more
simple method which involves error estimation will be presented.

7.3.2. The Surface fitting method

The method could be described as an adjustment of a plane as a function
of displacements between two epochs. The objective is to calculate the tilt of
the plane which describes how the area as a whole is tilting. By using
statistical methods, an idea of the significance of the tilt can be obtained.
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The method was constructed by the authors by using well known
adjustment and statistical methods. It should be seen as a complement to
the earlier mentioned "Mori" method.

X and Y co-ordinates are determined relative to the centroid of the
network, while the Z-values are represented by the deformations. A plane
through the measured area is then determined by using least squares.

Through the mentioned input data, a linear expression can be
determined for the plane in the following form:

fxy)=kx+ky (7.82)

The adjustment can be looked upon as a linear regression for the X- and
Y-axis separately. The input data is represented in vector and matrix form,
where A is the design matrix containing x- and y values for the points. L is
the observation vector (deformations). P is a weight matrix containing the
standard errors of the deformations in the diagonal, and F is a unit matrix.
The vectors and matrices are represented as follows: '

X; Y
A = .« e (7.33)
xn Yn
dl
L = . (d = deformation) (7.34)
d,
S, 0
0 s, .. O
P = : 0 (sq = deform. std. error) (7.35)
0 0 84

The element adjustment is then performed as presented in chapter 4.
The adjustment result is to be found in the following parameters:
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X ks (7.36)
= ,

Sy =  S*Jo.. (7.37)

S, = s Jo.., (7.38)

where s, denotes the standard error in k, , and s, denotes the standard
error in ky. The plane equation is obtained by using the formula (7.32).

The tilt of each axis can be obtained by using the arctangence function
on the k-values respectively.

By using the results of the element adjustment, a statistical test can be
done to see whether the X or Y axis have moved or not. A test value from
the t-distribution is obtained from a table. The parameter for the table is
the degree of freedom (f) from the adjustment, in this case number of points
minus two. The confidence interval is arbitrary, but 95% is often used. The
test is then carried through as follows:

H,, : 0 <ky-toons () * 8¢ (7.39)
- Hjo, : 0 <ky - 45005 (0 * 8y (7.40)

If one or both of the hypothesis are true, a tilt is proven statistically for
the X- and/or Y-axis.

A tilt test of the level deformations 1990-1992 showed a tilt « of -2.05
mgon for the X-axis and +1.45 mgon for the Y-axis. Both passed the
statistical test with minimum marginal since the H_, test resulted in
+0.224 mgonand H _, in +0.339 mgon. It must be mentioned though, that
tilt observations are mostly made on areas with more homogenous terrain.

Another test was made limiting the used deformations to the town centre
(point 1, 2, 8, 9, 13, 15, 16, 17, 18, 20 and 21). The result showed a similar
tilt but passed the statistical test with a slightly larger marginal ghan the
tilt test containing all points.

[a,, o] = [+2.16 mgon, -1.77 mgon]
[H,_» H,_,] = [+0.738 mgon, 0.325 mgon]
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The method can also be used for fitting a second or higher degree
equation to the deformation observations. The result can then be looked

upon as a surface of a certain degree describing the displacements. The
second degree equation is obtained by the following formula:

f(x,y)=k, x*+k, xy+k_ y*+k,x+ky (7.41)

The calculations are then carried through in the same way as for linear
expressions (see equations 7.33 - 7.38), but with a few exceptions:

« A consists ofx2, xy,y, xand y
» X consists of k,, k;, k, kyand k,

e S,;contains 5 parameters

7.4. Strain components

In some deformation studies the main interest is concentrated to the
tension between points. This means e.g. how three points are moving
relative to each other. The movements of the points compared to the datum
of the network is of less interest. The reason for the strain component study
is to see if there is any tension in the ground in a special area. The tension
is developed by local ground movements in different directions. This can be
more hazardous to constructions as roads and buildings than large
movements in the same direction.

The strain component method creates a triangle-shaped area by using
distance and angle observations of three points from two epochs (see figure
7.6). If only point co-ordinates exist, the angles and distances can be
obtained from them. The method calculates a vector which shows the size

and direction of the largest tension in the triangle. Another vector
perpendicular to the first one illustrates the size of the orthogonal stain.
Since the tension can be in two directions, i.e. stress or strain, two ways of

vector illustration exist (see figure 7.7).

When networks are tested for strain components, the network is divided
into triangles.
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7.4.1. Strain calculation method by Terada and Miyabe (1929)

I
|
I
|
|

Figure 7.6. Parameters in strain component calculation.

Except for the above mentioned parameters, the distance differences
between two epochs (Aa, Ab and Ac) are included. The angle differences

between two epochs are neglected. The calculations are then carried
through as follows:

ep=—  (7.42)

egg=—  (7.43)

er=2  (7.44)
C

tan6 = (er ~ep) sin’a - (eq - £p) sin? (o +)
2((2q - zp) sin(a +B) cos(a +B) -(er —ep) sina cosa)

(7.45)

2(eq - ep(1+ cos(2(8 + a)))
X,z = * 1+ cos(26)
D con(2(8 4 a)) - O cos(zl(z :0 2;(91)- c0s(26))

(7.46)
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= 7.47
Y 1+ cos(26) ( )
IfX > Y then [ey =X, e9=7Y] (7.48)
IfX < Y then [e =Y, g9 = X] (7.49)

The results are then presented as follows:

Azimuth of the vector with largest value : Dir=06+A, (7.50)
Maximum shortening forcel3 : Yy =—(g,—¢,) (7.51)
Aerial expansion (negative = contraction) : A=¢ +g, (7.52)

In the figure below, the dashed line symbolises stress and the
perpendicular line strain.

Flgure 7.7. Strain component vectors.

By studying the test results, conclusions can be drawn about in which
part of the network ground damages are most likely to occur. Except from
the illustrations, the method gives data about the areal change of the
triangle. The maximum shortening force is also received. It describes how

13 Direct translation of the spanish term "Msximo esfuerzo cortante”.
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the ground gives way in a certain direction when exposed to a force in the
perpendicular direction.

In some irregularly shaped networks, there may not be an ideal partition
in triangles. In these cases, different constellations of triangles may be
tried to see if they bring new interesting information.

Figure 7.8, Straln components of the Irazu volcano (Van Der Laat, 1992).

The pictures above show two different constellations created from the

same data. The observations are made by OVSICORI staff on a network
situated on the Irazu volcano near Cartago, Costa Rica.
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