CAPÍTULO 5

PROCEDIMIENTOS PARA EVALUAR LA CONFIABILIDAD **DEL SISTEMA ANALIZADO**

En la literatura se encuentran variados procedimientos para cuantificar la confiabilidad de los sistemas. Se entiende por confiabilidad a la probabilidad de que el sistema deje de prestar el servicio para el cual fue diseñado (Hopkins 1993); (Nyman 1984); (CAE 1991).

Cualquiera sea la metodología que se emplee, la finalidad de la evaluación es identificar los elementos críticos del sistema y determinar la sensibilidad del mismo a eventuales intervenciones, generalmente con el fin de optimizar la eficiencia del sistema.

TIEMPO DE REHABILITACIÓN

Esta medida toma en consideración la capacidad remanente del componente, la magnitud del daño y las expectativas de rehabilitación en unidades de tiempo. Con los análisis usuales de ingeniería, lo anterior puede aplicarse a estaciones y subestaciones de bombeo, tanques de almacenamiento, chimeneas de equilibrio, tanques de succión, puentes, tuberías de conducción y otros componentes.

Al estimar el tiempo de rehabilitación se debe considerar: (a) la magnitud del daño; (b) requerimientos y disponibilidad de recursos humanos, materiales y financieros; (c) facilidad de acceso al lugar; y (d) el grado de afectación de cada componente.

Comparación de tiempos de rehabilitación de tuberías-puentes sobre ríos

En la foto 5.1 se observa el puente A que cruza la quebrada Las Palmas con acceso inmediato a la carretera y en la foto 5.2 el puente B que cruza el río Guaire, de difícil acceso, en una zona de topografía irregular. En el cuadro 5.1 se comparan tiempos de rehabilitación correspondientes a problemas similares de socavación de las bases de las pilas de apoyo.

Para calcular el tiempo total de rehabilitación del sistema, se debe considerar las configuraciones en serie o en paralelo de los componentes del sistema. Por ejemplo, en el caso del cuadro 5.1 las tareas (2) y (3) pueden hacerse paralelamente.

Foto 5.1 Puente (quebrada Las Palmas) con acceso directo a la carretera

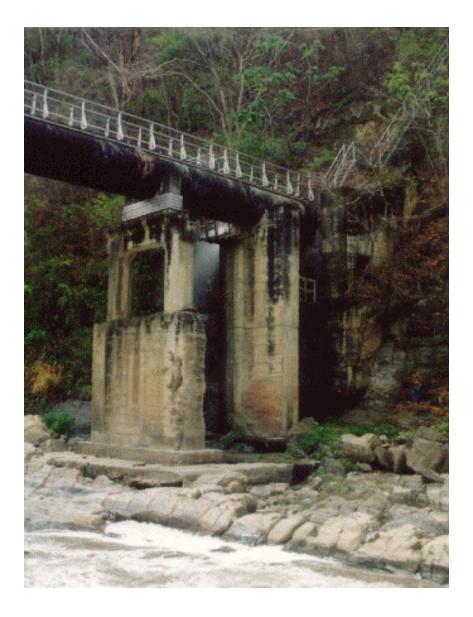


Foto 5.2. Puente B (río Guaire) en zona difícil acceso. Actualmente se accede por medio de la escalerilla de la derecha que mano conduce a una carretera que finaliza 20 metros más arriba.

Cuadro 5.1
Estimación del tiempo de rehabilitación
para dos tuberías-puente

Fase o tarea		Tiempo en horas	
		Puente A	Puente B
		Æ = 78''	Æ = 78''
1	Identificación del daño (1)	10 - 20	24 - 72
2	Interrupción del flujo	2	2
3	Preparación del material, equipo y cuadrilla	4	4
4	Traslado al sitio	1	5 - 10
5	Ejecución de reparación (2)	15 - 30	100 - 200
6	Coordinación de reinicio y puesta en operación	4	4
7	Total	36 – 61	139 - 292

- Depende de la frecuencia de inspección; el puente A es visible desde una vía secundaria de (1) acceso a una estación de bombeo. El puente B suele ser inspeccionado por vía aérea.
- (2) Se ha supuesto que la reparación requiere excavación parcial y llenado con concreto armado. En el caso del puente B, la solución puede requerir apuntalamientos temporales si el río está crecido.

SELECCIÓN DE ESCENARIOS

Generalmente, para verificar la confiabilidad de los sistemas se seleccionan escenarios extremos (Davis 1980); (Hopkins 1993); (World y Jochim 1989); (CAE 1991).

Entre las amenazas naturales consideradas en el presente documento destacan las tres siguientes:

- Vientos huracanados: la distribución de valores extremos de velocidades de viento dada en la figura 2.2, con velocidades asociadas a períodos de retorno de 500 años, permite observar que sólo representan 66% de los vientos equivalentes a acciones sísmicas de diseño. La evaluación de solicitaciones fue hecha con la norma COVENIN 2003-86 "Acciones del viento sobre las construcciones", para la cual se seleccionó una chimenea de 98 m de altura y 7,0 m de diámetro, considerado como el componente potencialmente más vulnerable a la acción eólica.
- Tormenta tropical: los efectos de las crecidas en las pilas de los puentes, tales como la erosión (inestabilidad de pendientes y deslizamientos potenciales) y posibles efectos en la turbiedad del agua almacenada en los embalses, sólo es objeto de evaluación parcial.

Sismos: El área puede ser afectada